Автор:

Рубрика: Математика

Опубликовано в Молодой учёный №15 (149) апрель 2017 г.

Дата публикации: 18.04.2017

Статья просмотрена: 143 раза

Библиографическое описание:

Пармонов Х. Ф. О свойствах положительно определенных матриц // Молодой ученый. — 2017. — №15. — С. 109-110. — URL https://moluch.ru/archive/149/41870/ (дата обращения: 22.05.2018).



Пусть множество комплексных чисел, - декартовое произведение, а множество матриц размера с комплексными элементами.

Если для матрицы имеет место неравенство при всех , то матрица называется положительно определенным. Если выполняется условие при всех ненулевых , то матрица называется строго положительно определенным.

Если матрица является положительной, то говорят, что .

Если при всех выполняется равенство , то матрица называется эрмитовой или самосопряженной.

Приведем некоторые факты о положительно определенных матриц.

Предложение 1. Матрица является положительной тогда и только тогда, когда она эрмитова и ее все собственные значения неотрицательны. Матрица является строго положительной тогда и только тогда, когда она эрмитова и ее все собственные значения положительны.

Предложение 2. Матрица является положительной тогда и только тогда, когда она эрмитова и ее главные миноры неотрицательные. Матрица является строго положительной тогда и только тогда, когда она эрмитова и ее все главные миноры положительные.

Предложение 3. Матрица является положительной тогда и только тогда, когда существует матрица такая, что . Матрица является строго положительной тогда и только тогда, когда матрица не сингулярная.

Предложение 4. Матрица является положительной тогда и только тогда, когда существует положительная матрица такая, что . Матрица является строго положительной тогда и только тогда, когда матрица строго положительна.

Заметим, что в Предложение 4, матрица является единственной, и она называется квадратным корнем матрицы и обозначается через .

Пусть евклидово пространство, т. е. линейное пространство со скалярным произведением.

Теорема 1. Матрица является положительной тогда и только тогда, когда существуют элементы такие, что,

.

Матрица является строго положительной тогда и только тогда, когда элементы , линейно независимы.

Рассмотрим пример на применении теоремы 1.

Пример 1. Пусть фиксированные вещественные положительные числа. Определим матрицу размера с элементами

.

Такая матрица называется матрицей Коши. Тогда имеет место соотношение

.

Если , , то и при всех имеет место равенство , где для элементов справедливо равенство

.

В силу теоремы 1 матрица является положительной.

Если и положительные эрмитовы матрицы, то также положительная эрмитова матрица. Произведение матриц является эрмитовым тогда и только тогда, когда и коммутативные матрицы.

Матрица называется симметрическим произведением матриц и . Если матрицы и эрмитовы, то также эрмитова. Вообще говоря, из положительности матриц и не всегда вытекает положительность матрицы .

Пример 2. Для любых определим эрмитовы матрицы

, .

Видно, что если , то матрица является положительно определенной. Для любого элемента имеет место равенство

.

Через обозначим аргумент комплексного числа . Тогда имеет место равенство . Поэтому квадратичная форма записывается в виде . Таким образом, при матрица является положительно определенной. По определению имеет место равенство

,

следовательно, для любого элемента имеет место равенство

.

При этом, если близко к нулю, а близко к 1, то матрица не является положительно. Например, для элемента имеет место равенство . Если положить и , то .

Пусть и эрмитовы матрицы и матрица строго положительна. Если симметрическое произведение является положительным (строго положительным), то матрица также является положительным (строго положительным).

Литература:

  1. R. Bhatia. Matrix analysis. Springer-Verlag, New York, 1997.
  2. R. Bhatia. Positive definite matrices. In: Princeton Series in Applied Mathematics. Princeton University Press, 1997.
Основные термины (генерируются автоматически): место равенство, положительная эрмитова матрица, эрмитовы матрицы, определенных матриц, положительная матрица, положительные эрмитовы матрицы, множество матриц размера, главные миноры, симметрическим произведением матриц, квадратным корнем матрицы, собственные значения, главные миноры положительные, коммутативные матрицы, положительность матрицы, вещественные положительные числа, главные миноры неотрицательные, положительности матриц, Произведение матриц, собственные значения неотрицательны, собственные значения положительны.


Обсуждение

Социальные комментарии Cackle
Задать вопрос