Спектр и квадратичный числовой образ обобщенной модели Фридрихса | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Математика

Опубликовано в Молодой учёный №11 (197) март 2018 г.

Дата публикации: 15.03.2018

Статья просмотрена: 6 раз

Библиографическое описание:

Дилмуродов Э. Б. Спектр и квадратичный числовой образ обобщенной модели Фридрихса // Молодой ученый. — 2018. — №11. — С. 1-3. — URL https://moluch.ru/archive/197/48728/ (дата обращения: 19.12.2018).



Один из классических методов изучения спектра линейного оператора в гильбертовом пространстве — это изучение числового образа этого оператора [1]:

,

здесь есть область определения оператора . Если — ограниченный оператор, то . Известно, что точечный спектр оператора лежит в , а аппроксимативно точечный спектр оператора содержится в . Если замкнутый оператор и всякая компонента множества содержит хотя бы одну точку резольвентного множество оператора , то имеет место включение (-множество комплексных чисел). В силу теоремы Тёплица — Хаусдорфа числовой образ является выпуклым подмножеством множества . С одной стороны, свойства выпуклости является важным свойством, например, при доказательстве принадлежности спектра в полуплоскость. Но, числовой образ иногда дает недостаточно хорошую структуру, если спектр состоит из объединения двух не пересекающихся множеств.

Учитывая этих неудобств, в работе [2] введено понятие квадратичного числового образа и затем изучены в работах [3,4]. Оно определено, если дано разложение гильбертово пространство и , здесь и гильбертово пространства. Тогда оператор всегда записывается как квадратичная блочно-операторная матрица размера

(1)

с линейными операторами , . Для неограниченного линейного оператора в , его область определении необязательно должна быть разложимой как c , и следовательно, это дополнительное предложение, того что оператор имел представление (1) такое, что

.

Пусть , — скалярное произведение и норма в , , соответственно.

Множество всех собственных значений матрицы

таких, что и , называется квадратичным числовым образом оператора , соответствующий представлению (1) блочно-операторной матрицы и обозначается через , т. е.

Для двух различных разложений гильбертово пространства , могут соответствовать различные квадратично числовые образы.

Обозначим через — множество всех целых, вещественных и комплексных чисел, соответственно.

Пусть — мерный тор, т. е. куб — с соответствующим отождествлением противоположных граней. Всюду в работе рассматривается как абелева группа, в которой операции сложения и умножения на вещественное число введены как операции сложения и умножения на вещественное число в по модулю .

Пусть — гильбертово пространство квадратично — интегрируемых (комплекснозначных) функций, определенных на Обозначим через прямую сумму пространств и , т. е. .

Гильбертово пространство обычно называется двухчастичным обрезанным подпространством фоковского пространства.

В данной статье рассмотрим обобщенную модель Фридрихса , действующую в гильбертовом пространстве как блочно-операторная матрица (1), где элементы , определяются по формулам

, , , (2)

здесь ; фиксированные вещественные числа, вещественнозначная непрерывная функция на , а сопряженный оператор к . При этом оператор называется оператором уничтожения, а называется оператором рождения.

Можно проверить, что при таких предположениях операторная матрица , определенный по формуле (1) с матричными элементами (2), является ограниченным и самосопряженным в гильбертовом пространстве .

Следующая теорема описывает спектр оператора .

Теорема 1. Для спектра оператора имеет место равенство , т. е. оно имеет чисто точечный спектр, где, — бесконечнократное собственное значение, а и — простые собственные значения.

Следующие две теоремы дают информации о квадратичном числовом образе оператора .

Теорема 2. При , имеет место равенство .

Для формулировки второго основного результата работы введем следующие множества:

Теорема 3. Если , то имеет место равенство , причём .

Отметим, что в работе [5] при всех размерностях тора подробно исследованы числовой образ обобщенной модели Фридрихса в терминах матричных элементов. Выделены случаи, когда множество замкнуто. Найдены необходимые и достаточные условия для того, чтобы спектр оператора совпадал с множеством . А связь между числовым образом и спектром модели Фридрихса с двумерным возмущением изучена в работе [6].

Литература:

  1. O.Toeplitz. Das algebraische Analogon zu einem Satze von Fejer. Math. Z., 1918, vol. 2, no. 1–2, pp. 187–197.
  2. H.Langer, C.Tretter. Spectral decomposition of some nonselfadjoint block operator matrices. J. Operator Theory, 39:2 (1998), 339–359.
  3. H.Langer, A. S. Markus, V. I. Matsaev, C.Tretter. A new concept for block operator matrices: the quadratic numerical range. Linear Algebra Appl., 330:1–3 (2001), 89–112.
  4. H.Langer, A. S. Markus, C.Tretter. Corners of numerical ranges. In Recent advances in operator theory (Groningen, 1998), vol. 124 of Oper. Theory Adv. Appl., 385–400 (Birkhauser, Basel, 2001).
  5. Т. Х. Расулов, Э. Б. Дилмуродов. Исследование числовой области значений одной операторной матрицы. Вестн. Сам. гост. техн. ун-та. Сер. Физ.-мат. науки, 2014. № 2(35). С. 50–63.
  6. Т. Х. Расулов, Э.Дилмуродов. Оценки для квадратичной числовой области значений одной операторной матрицы. Узбекский математический журнал. № 1 (2015), С. 64–74
Основные термины (генерируются автоматически): гильбертово пространство, числовой образ, квадратичный числовой образ, спектр оператора, оператор, точечный спектр оператора, обобщенная модель, множество, вещественное число, блочно-операторная матрица.


Похожие статьи

Квадратичный числовой образ одной 2x2 операторной матрицы

Одним из классических методов изучения спектра линейного оператора в гильбертовом пространстве с областью определения является изучение его числового образа: . Пусть , и - множества всех целых, вещественных и комплексных чисел, соответственно.

Нули определителя Фредгольма, соответствующие одной...

гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная матрица, ограниченный самосопряженный оператор.

Числовой образ многомерной обобщенной модели Фридрихса

Множество. называется числовым образом оператора.

Рассмотрим обобщенную модель Фридрихса действующую в гильбертовом пространстве как блочно-операторная матрица.

Спектр и квадратичный числовой образ обобщенной модели Фридрихса.

Описание множества собственных значений одной блочной...

оператор, гильбертово пространство, оператор уничтожения, существенный спектр, оператор рождения, блочно-операторная матрица, ограниченный самосопряженный оператор, обобщенная модель...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся...

Существенный спектр модельного трехчастичного оператора...

существенный спектр оператора, существенный спектр, ветвь, гильбертово пространство, свойство монотонности интеграла, модельный оператор, дискретный спектр, дискретный оператор, вещественное число, работа.

Существенный спектр дополнения Шура одной операторной...

Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор , действующий в всегда представляется как блочно-операторная матрица. (1). С линейными ограниченными операторами .

Кубический числовой образ на примерах | Статья в журнале...

Для линейного оператора в гильбертовом пространстве с областью определения множество называется его числовым образом. Известно, что точечный спектр оператора лежит в , а его аппроксимативно точечный спектр содержится в , см. например [1]. Для того...

Числовой образ линейных операторов: основные свойства...

Ключевые слова: числовой образ, выпуклые множества, матрица, линейный оператор, точечный и аппроксимативно точечный спектры, ядро спектра, оператор левого сдвига, неравенство Коши-Буняковского. 1. Введение. Пусть комплексное гильбертово пространство...

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Квадратичный числовой образ одной 2x2 операторной матрицы

Одним из классических методов изучения спектра линейного оператора в гильбертовом пространстве с областью определения является изучение его числового образа: . Пусть , и - множества всех целых, вещественных и комплексных чисел, соответственно.

Нули определителя Фредгольма, соответствующие одной...

гильбертово пространство, оператор, собственное значение оператора, существенный спектр оператора, существенный спектр, операторная матрица, ограниченный самосопряженный оператор.

Числовой образ многомерной обобщенной модели Фридрихса

Множество. называется числовым образом оператора.

Рассмотрим обобщенную модель Фридрихса действующую в гильбертовом пространстве как блочно-операторная матрица.

Спектр и квадратичный числовой образ обобщенной модели Фридрихса.

Описание множества собственных значений одной блочной...

оператор, гильбертово пространство, оператор уничтожения, существенный спектр, оператор рождения, блочно-операторная матрица, ограниченный самосопряженный оператор, обобщенная модель...

Условия существования собственных значений одной...

Блочно-операторная матрица — это матрица, элементы которой являются линейными операторами в банаховом или гильбертовом пространствах [1]. Одним из специальных классов блочно-операторных матриц являются Гамильтонианы системы с несохраняющимся...

Существенный спектр модельного трехчастичного оператора...

существенный спектр оператора, существенный спектр, ветвь, гильбертово пространство, свойство монотонности интеграла, модельный оператор, дискретный спектр, дискретный оператор, вещественное число, работа.

Существенный спектр дополнения Шура одной операторной...

Пусть и -три гильбертовы пространства и . Тогда известно, что всякий линейный ограниченный оператор , действующий в всегда представляется как блочно-операторная матрица. (1). С линейными ограниченными операторами .

Кубический числовой образ на примерах | Статья в журнале...

Для линейного оператора в гильбертовом пространстве с областью определения множество называется его числовым образом. Известно, что точечный спектр оператора лежит в , а его аппроксимативно точечный спектр содержится в , см. например [1]. Для того...

Числовой образ линейных операторов: основные свойства...

Ключевые слова: числовой образ, выпуклые множества, матрица, линейный оператор, точечный и аппроксимативно точечный спектры, ядро спектра, оператор левого сдвига, неравенство Коши-Буняковского. 1. Введение. Пусть комплексное гильбертово пространство...

Задать вопрос