Авторы: Расулов Тулкин Хусенович, Тошева Наргиза Абдуллаевна

Рубрика: Математика

Опубликовано в Молодой учёный №12 (116) июнь-2 2016 г.

Дата публикации: 06.06.2016

Статья просмотрена: 7 раз

Библиографическое описание:

Расулов Т. Х., Тошева Н. А. О спектре тензорной суммы интегральных операторов // Молодой ученый. — 2016. — №12. — С. 64-66.



Пусть и — бесконечномерные гильбертовы пространства и их тензорное произведение [1,2]. Рассмотрим линейные ограниченные самосопряженные операторы и , действующие в и , соответственно. Обозначим через тензорное произведение [1] операторов и . Оператор также является линейным ограниченным самосопряженным оператором, действующим в гильбертовом пространстве . Положим где и — тождественные операторы в и , соответственно. Оператор мы будем называть тензорной суммой и , и будем обозначать через . Оператор также является линейным ограниченным самосопряженным оператором [1], действующим в гильбертовом пространстве .

Обозначим через , и , соответственно, спектр, существенный спектр и дискретный спектр ограниченного самосопряженного оператора.

Для спектров операторов и верны равенства [1]:

и

.

Очевидно, что если и то .

В квантовой теории поля [3,4], физики твердого тела [5], а также в механике сплошных средств [6,7], аэродинамике [8] и других областях физики и механике встречаются частично–интегральные операторы вида

, (1)

действующие в гильбертовом пространстве квадратично–интегрируемых (комплекснозначных) функций, определенных на . Здесь функции , непрерывны на , а функция непрерывна на .

Данная работа посвящена изучению существенного и дискретного спектров операторов в случае

,

где –вещественнозначные непрерывные функции на . Тогда оператор имеет следующий вид

.

Наряду с оператором , рассмотрим еще оператор , действующий в гильбертовом пространстве по формуле

, , .

Из определения операторов и , , получим, что оператор можно представит как тензорная сумма Здесь означает тождественный оператор в .

В данной работе будем изучать спектральные свойства оператора с помощью тензорной суммы операторов.

Видно, что

.

Поэтому , т. е. есть одномерный оператор.

Множество всех изолированных точек спектра самосопряженного оператора , за исключением собственных значений бесконечной кратности оператора , будем называть дискретным спектром оператора . Множество называется существенным спектром оператора .

Следующая лемма описывает спектра оператора .

Лемма 1.Для существенного спектра оператора , имеет места равенства . Оператор , имеет единственное простое собственное значение равное .

Теперь сформулируем основной результат работы.

Теорема 1. Имеет место равенства

;

.

Доказательство. Как отметили выше из определения операторов и , получим, что оператор можно представит как тензорная сумма . Поэтому для спектра оператора имеем

.

В силу леммы 1 имеем

, .

Нетрудно видеть, что

;

.

Теорема 1 доказана.

В работе [9], модельный оператор, ассоциированный с системой трех частиц на -мерной решетке рассматривается как тензорная сумма моделей Фридрихса. Найден явный вид существенного и дискретного спектра этого модельного оператора.

Литература:

  1. М.Рид, Б.Саймон, Методы современной математической физики, Т. 1: Функциональный анализ. М.: Мир, 1977, 360 с.
  2. Ф. А. Березин, М. А. Шубин. Уравнение Шредингера. М.: Изд-во МГУ, 1983, 392 с.
  3. В. А. Какичев, Н. В. Коваленко. К теории двумерных интегральных уравнений с частными интегралами. Укр. Мат. Журн. Т. 23, № 3, С. 302–312.
  4. К. О. Фридрихс. Возмущение спектра операторов в гильбертовом пространстве. М.: Мир, 1969.
  5. A. I. Mogilner. Hamiltonians in solid state physics as multiparticle discrete Schroedinger operators: problems and results. AdvancesinSov. Math., — 1991, — V. 5, P. 139–194.
  6. В. М. Александров, Е. В. Коваленко. Задачи механики сплошных сред со смешанными граничными условиями. М.: Наука, 1986.
  7. V. M. Aleksandrov, E. V. Kovalenko. On some class of integral equations arising in mixed boundary value problems of continuous mechanics. SovietPhys. Dokl. — 1980, V. 25, N. 2, P. 354–356.
  8. А. С. Калитвин. О некотором классе частично интегральных уравнений в аэродинамике. Состояние и перспектива развития наук и технике под Липецком. –1994, С. 210–212.
  9. Т. Х. Расулов, Б. И. Бахронов. О спектре тензорной суммы моделей Фридрихса. Молодой ученый. № 9 (89), 2015, С. 17–20.
Основные термины (генерируются автоматически): гильбертовом пространстве, спектра оператора, тензорной суммы, спектре тензорной суммы, тензорная сумма, линейным ограниченным самосопряженным, ограниченным самосопряженным оператором, спектром оператора, определения операторов, спектров операторов, существенного спектра оператора, тензорной суммы операторов, тензорной суммы интегральных, гильбертовом пространстве квадратично–интегрируемых, тензорное произведение, существенным спектром оператора, дискретным спектром оператора, бесконечной кратности оператора, спектральные свойства оператора, дискретного спектров операторов.

Обсуждение

Социальные комментарии Cackle
Задать вопрос