Понятие дифференциальных уравнений и их развитие | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 11 мая, печатный экземпляр отправим 15 мая.

Опубликовать статью в журнале

Библиографическое описание:

Акмырадов, Я. Ч. Понятие дифференциальных уравнений и их развитие / Я. Ч. Акмырадов, С. А. Аллаберенов, О. А. Мередов. — Текст : непосредственный // Молодой ученый. — 2023. — № 8 (455). — С. 1-2. — URL: https://moluch.ru/archive/455/100205/ (дата обращения: 03.05.2024).



В данной статье рассматриваются современные взгляды развития дифференциального уравнения и его значение в обучении. Проведен перекрестный и сравнительный анализ влияния методик и различных факторов на развитие математики.

Ключевые слова: анализ, метод, образование, математика, наука.

Уравнение, содержащее производную неизвестной функции, называется дифференциальным уравнением. Скорость изменения функции в точке определяется производными функции. Дифференциальное уравнение связывает эти производные с другими функциями. Дифференциальные уравнения в основном используются в областях биологии, физики, техники и многих других. Основное назначение дифференциального уравнения состоит в изучении решений, удовлетворяющих уравнениям, и изучении свойств решений. Давайте обсудим определение, типы, методы решения дифференциального уравнения, порядок и степень дифференциального уравнения, типы дифференциальных уравнений, примеры из реальной жизни и практические задачи.

Дифференциальное уравнение — это уравнение, которое содержит хотя бы одну производную неизвестной функции, либо обыкновенную производную, либо частную производную. Предположим, что скорость изменения функции y по отношению к x обратно пропорциональна y, мы выражаем ее как dy/dx = k/y.

В исчислении дифференциальное уравнение — это уравнение, которое включает производную (производные) зависимой переменной по отношению к независимой переменной (переменным). Производная представляет собой не что иное, как скорость изменения, а дифференциальное уравнение помогает нам представить отношение между изменяющейся величиной по отношению к изменению другой величины. y=f(x) — функция, где y — зависимая переменная, f — неизвестная функция, x — независимая переменная. Несколько примеров:

  1. (dy/dx) = sin x
  2. (d 2 y/dx 2 ) + k 2 y = 0
  3. (d 2 y/dt 2 ) + (d 2 x/dt 2 ) = x
  4. (d 3 y/dx 3 ) + x(dy/dx) — 4xy = 0
  5. (rdr/dθ) + cosθ = 5

Порядок дифференциального уравнения — это наивысший порядок производной, входящей в уравнение. Рассмотрим следующие дифференциальные уравнения:

dy/dx = ex, (d4y/dx4) + y = 0, (d3y/dx3) + x2(d2y/dx2) = 0

В приведенных выше примерах дифференциальных уравнений старшие производные имеют первый, четвертый и третий порядок соответственно.

Вы можете видеть в первом примере, что это дифференциальное уравнение первого порядка, которое имеет степень, равную 1. Все линейные уравнения в виде производных имеют первый порядок. Он имеет только первую производную, такую как dy/dx, где x и y — две переменные, и представляется как: dy/dx = f(x, y) = y'.

Дифференциальное уравнение второго порядка

Уравнение, включающее производную второго порядка, является дифференциальным уравнением второго порядка. Он представлен так:

d/dx(dy/dx) = d2y/dx2 = f”(x) = y”.

Степень дифференциальных уравнений

Если дифференциальное уравнение представимо в полиномиальной форме, то интегральная степень возникающей производной старшего порядка называется степенью дифференциального уравнения. Степень дифференциального уравнения — это степень старшей производной, присутствующей в уравнении. Чтобы найти степень дифференциального уравнения, нам нужно иметь положительное целое число в качестве индекса каждой производной.

Дифференциальные уравнения классифицируются как:

— Обыкновенные дифференциальные уравнения

— Уравнения с частными производными

«Обыкновенное дифференциальное уравнение», также известное как ОДУ, представляет собой уравнение, которое содержит только одну независимую переменную и одну или несколько ее производных по переменной. Таким образом, обыкновенное дифференциальное уравнение представляется как отношение, имеющее одну независимую переменную x, вещественную зависимую переменную y, с некоторыми ее производными y', y”, …y*n. по x. Обыкновенное дифференциальное уравнение может быть однородным или неоднородным.

Однородное дифференциальное уравнение

Дифференциальное уравнение, в котором степени всех членов одинаковы, называется однородным дифференциальным уравнением. В общем случае их можно представить как P(x,y)dx + Q(x,y)dy = 0, где P(x,y) и Q(x,y) — однородные функции одной степени.

Неоднородное дифференциальное уравнение

Дифференциальное уравнение, в котором степень всех членов не одинакова, называется однородным дифференциальным уравнением.

Пример: xy(dy/dx) + y 2 + 2x = 0 не является однородным дифференциальным уравнением.

Одним из видов неоднородного дифференциального уравнения является линейное дифференциальное уравнение, аналогичное линейному уравнению. Дифференциальное уравнение вида (dy/dx) + Py = Q (где P и Q — функции от x) называется линейным дифференциальным уравнением.

(dy/dx) + Py = Q (где P, Q — константы или функции y).

Уравнение в частных производных

Уравнение, включающее только частные производные одной или нескольких функций двух или более независимых переменных, называется уравнением в частных производных, также известным как УЧП.

Дифференциальное уравнение имеет бесконечно много решений. Решение дифференциального уравнения называется интегрированием дифференциального уравнения, поскольку процесс нахождения решения дифференциального уравнения включает в себя интегрирование. Решение дифференциального уравнения — это выражение зависимой переменной через независимую переменную, которая удовлетворяет дифференциальному уравнению.

Решение, содержащее столько же произвольных констант, называется общим решением. Если мы придаем частные значения произвольным константам в общем решении дифференциального уравнения, полученное решение называется частным решением. Результат исключения одной произвольной константы дает дифференциальное уравнение первого порядка, а результат исключения двух произвольных констант приводит к дифференциальному уравнению второго порядка и так далее.

Литература:

1. Бабенко, К. И. Основы численного анализа / К. И. Бабенко. — М.: Главная редакция физико-математической литературы издательства «Наука», 1986. — 744 c.

2. Бакушинский, А. Элементы высшей математики и численных методов / А. Бакушинский, В. Власов. — М.: Просвещение, 2014. — 336 c.

3. Босс, В. Лекции по математике. Том 1. Анализ. Учебное пособие / В. Босс. — М.: Либроком, 2016. — 216 c.

4. Воробьев, Н. Н. Теория рядов / Н. Н. Воробьев. — М.: Главная редакция физико-математической литературы издательства «Наука», 1986. — 408 c.

5. Гусак, А. А. Задачи и упражнения по высшей математике. Часть 2 / А. А. Гусак. — М.: Вышэйшая школа, 2013. — 384 c.

Основные термины (генерируются автоматически): дифференциальное уравнение, производная, уравнение, однородное дифференциальное уравнение, переменная, дифференциальное уравнение второго порядка, неизвестная функция, линейное дифференциальное уравнение, неоднородное дифференциальное уравнение, общее решение.


Похожие статьи

дифференциальное уравнение, уравнение, функция, решение...

дифференциальное уравнение, задача, дополнительная информация, радиоактивное вещество, техническая система, условие задачи, искомое решение, математическая модель, обратная задача, общее решение.

Логарифмический метод решения обыкновенных...

логарифмический метод, дифференциальное уравнение первого порядка, вид, дифференциальное уравнение, неоднородное линейное дифференциальное уравнение, подстановка, уравнение, функция.

Решение линейных рекуррентных соотношений второго порядка

Рассматривается неоднородное линейное рекуррентное соотношение (ЛРС) второго порядка с постоянными

Решение однородного уравнения для уравнения (2) раскладывается по базису [6]

Понтрягин Л. С. Обыкновенные дифференциальные уравнения. — М.:Наука, 1974.

Периодические решения разностного уравнения третьего порядка.

О методе решения линейных интегральных уравнений...

Некоторые процессы не могут быть адекватно описаны обыкновенными дифференциальными уравнениями (т. е. уравнениями, в которые значения неизвестной функции и ее производных входит при одном и том же значении независимой переменной («времени»)).

Решение системы нелинейных дифференциальных уравнений...

В статье получен алгоритм решения линейной однородной системы дифференциальных уравнений, который использует жорданову нормальную форму матрицы этой системы и получено классификацию решений такой системы третьего порядка.

Решение дифференциальных уравнений методом...

Определение 1. Дифференциальным уравнением называется уравнение, связывающее искомую функцию

Если неизвестная функция в дифференциальном уравнении является функцией от одной переменной, тогда

Пусть задано уравнение (1) и функция определена в области Г плоскости R2.

Обозначив получим дифференциальное уравнение и его решение .

линейные однородные дифференциальные уравнения...

3. Однородным дифференциальным уравнением первого порядка являются дифференциальные уравнения

3. Общий вид частного решения линейного неоднородного дифференциального уравнения второго порядка будет выглядеть так…

Особенности составления дифференциальных уравнений...

Часто сам процесс вывода дифференциального уравнения представляет собой сложную

Решением уравнения с разделяющимися переменными будет семейство функций или .

На основании второго закона Ньютона получим дифференциальное уравнение .

Решение системы нелинейных дифференциальных уравнений высших порядков.

Решение краевой задачи для линейных дифференциальных...

(9), (10) называется краевой задачей для гиперболического дифференциального уравнения (КЗ для ГДУ). Функция , удовлетворяющая ГДУ и краевым условиям называется точным решением: , , . Явная КРС ,для ГДУ с точностью имеет вид

Похожие статьи

дифференциальное уравнение, уравнение, функция, решение...

дифференциальное уравнение, задача, дополнительная информация, радиоактивное вещество, техническая система, условие задачи, искомое решение, математическая модель, обратная задача, общее решение.

Логарифмический метод решения обыкновенных...

логарифмический метод, дифференциальное уравнение первого порядка, вид, дифференциальное уравнение, неоднородное линейное дифференциальное уравнение, подстановка, уравнение, функция.

Решение линейных рекуррентных соотношений второго порядка

Рассматривается неоднородное линейное рекуррентное соотношение (ЛРС) второго порядка с постоянными

Решение однородного уравнения для уравнения (2) раскладывается по базису [6]

Понтрягин Л. С. Обыкновенные дифференциальные уравнения. — М.:Наука, 1974.

Периодические решения разностного уравнения третьего порядка.

О методе решения линейных интегральных уравнений...

Некоторые процессы не могут быть адекватно описаны обыкновенными дифференциальными уравнениями (т. е. уравнениями, в которые значения неизвестной функции и ее производных входит при одном и том же значении независимой переменной («времени»)).

Решение системы нелинейных дифференциальных уравнений...

В статье получен алгоритм решения линейной однородной системы дифференциальных уравнений, который использует жорданову нормальную форму матрицы этой системы и получено классификацию решений такой системы третьего порядка.

Решение дифференциальных уравнений методом...

Определение 1. Дифференциальным уравнением называется уравнение, связывающее искомую функцию

Если неизвестная функция в дифференциальном уравнении является функцией от одной переменной, тогда

Пусть задано уравнение (1) и функция определена в области Г плоскости R2.

Обозначив получим дифференциальное уравнение и его решение .

линейные однородные дифференциальные уравнения...

3. Однородным дифференциальным уравнением первого порядка являются дифференциальные уравнения

3. Общий вид частного решения линейного неоднородного дифференциального уравнения второго порядка будет выглядеть так…

Особенности составления дифференциальных уравнений...

Часто сам процесс вывода дифференциального уравнения представляет собой сложную

Решением уравнения с разделяющимися переменными будет семейство функций или .

На основании второго закона Ньютона получим дифференциальное уравнение .

Решение системы нелинейных дифференциальных уравнений высших порядков.

Решение краевой задачи для линейных дифференциальных...

(9), (10) называется краевой задачей для гиперболического дифференциального уравнения (КЗ для ГДУ). Функция , удовлетворяющая ГДУ и краевым условиям называется точным решением: , , . Явная КРС ,для ГДУ с точностью имеет вид

Задать вопрос