Описание спектра одного интегрального оператора в гильбертовом пространстве с весом | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Библиографическое описание:

Турдиев, Х. Х. Описание спектра одного интегрального оператора в гильбертовом пространстве с весом / Х. Х. Турдиев, Ф. Ф. Хомидов, Д. Г. Райимов. — Текст : непосредственный // Молодой ученый. — 2015. — № 10 (90). — С. 30-33. — URL: https://moluch.ru/archive/90/18813/ (дата обращения: 16.01.2025).

В настоящей работе изучается интегральный оператор, действующий в гильбертовом пространстве  функций квадратично интегрируемых по интервалу с весом  Спектр этого оператора описан через спектр оператора типа Винера-Хопфа.

Ключевые слова: интегральный оператор, гильбертово пространство с весом, оператор типа Винера-Хопфа.

 

В последнее тридцатилетие значительно усилился интерес математиков к конкретным задачам, имеющим происхождение в теоретической физике. В результате заметно изменилось содержание традиционной математической физики. Наиболее популярным и традиционным объектом для математической физики служит нерелятивистская квантовая механика, точнее- оператор Шредингера. Более того, сам облик современной математической физики в значительной мере сформировался при изучении этого оператора. По сути дела вся атомная, молекулярная и значительная часть ядерной физики, физики плазмы и твердого тела состоит в изучении оператора Шредингера [1–3]. Поэтому исследование оператора Шредингера играет чрезвычайно важную роль в современной математике.

В спектральном анализе трехчастичного непрерывного и решетчатого оператора Шредингера имеется следующий замечательный результат:

если в системе тpех частиц, взаимодействующих с помощью паpных коpоткодействующих потенциалов, ни одна из тpех двухчастичных подсистем не имеет связанных состояний с отрицательной энергией, но по меньшей меpе две из них имеют pезонанс с энеpгией в нуле, то у этой тpехчастичной системе существует бесконечное число тpехчастичных связанных состояний с отpицательной энеpгией, накапливающихся к нулю. Этот эффект впеpвые был обнаpужен Ефимовым [4]. При доказательстве существование эффекта Ефимова для решетчатых моделей, в том числе для трехчастичного дискретного оператора Шредингера основной роль играет предельный оператор Фаддеева и показывается, что этот оператор имеет существенный спектр, лежащий правее точки 1. см. например [5–8]. В Данной работе рассматривается интегральный оператор, который получается при изучении спектра оператора Фаддеева соответствующих для некоторых моделей.

Рассмотрим оператор  действующий в  по формуле

где , а  положительные постоянные.

Тогда оператор  имеет инвариантное подпространство, состоящее из сферически-симметричных функций. Действительно, если  и поворот шара в себя относительно нуля, то

Сделав замену  и учитывая соотношения

и

имеем, что

.

Здесь через  обозначен угол между  и . Отсюда следует, что функция зависит только от модуля , поэтому  выбираем . Теперь переходя к сферическим координатам

  

мы получим

Можно считать, что «сферически-симметрическая» часть оператора  является оператором, действующим в гильбертовом пространстве функций квадратично интегрируемых по интервалу с весом . т. е.

Пусть оператор  действует из пространства в пространство  по следующему правилу

Оператор  сохраняет норму и его область значений совпадает со

всем пространством. Действительно,

Сделав замену  мы получим, что

Лемма 1. Оператор  унитарно эквивалантен оператору  действующему в по формуле

Доказательство. Унитарная эквивалентность операторов  и  осуществляется при помощи унитарного оператора  Легко можно проверит, что  Имеем

Сделая замену  получим, что

Теперь рассмотрим

Из равенств (1) и (2) следует, что  Лемма 1 доказана.

В следующем утверждении, полученном Гохбергом и Крейном, дано описание спектра матричного оператора типа Винера-Хопфа.

Предложение 1. Пусть гильбертово пространство трех- компонентных вектор функций где

Пусть оператор  действующий в определяется следующим образом: равенство  означает, что

где  и  Обозначим через  симметричную трехрядную матрицу, элементы которой определяются соотношениями

а через  собственные числа матрицы  Тогда  является ограниченным самосопряженным оператором, спектр которого совпадает с множеством значений, принимаемых функциями  при вещественных

Из Предложения 1 вытекает следующее

Предложение 2. Оператор  является ограниченным, самосопряженным оператором, спектр которого совпадает с множеством значений, принимаемых функцией

при вещественных

Так как  непрерывна, то согласно предложению 2 получим следующее

Предложение 3. Если при некотором  число  то существенный спектр оператора  содержит интервал расположенный правее точки

Благодарности. Авторы выражают искреннюю благодарность Т. Х. Расулову за постановку задачи и за ценные обсуждение.

 

Литература:

 

1.         Рид. М., Саймон.Б. Методы современной математической физики. Т.3. Теория рассеяния. М.: Мир. 1982.

2.         Рид. М., Саймон.Б. Методы современной математической физики. Т.4. Анализ операторов. М.: Мир. 1982.

3.         Меркурьев С. П.,Фаддеев Л. Д. Квантовая теория рассеяния для систем нескольких частиц. М.: Наука. 1985.

4.         Efimov V. N. Energy levels arising from resonances two-body forces in a three-body system. Phys. Lett. 1970. B.33. No.8. pp.563–564.

5.         Лакаев С. Н., Муминов М. Э., Существенный и дискретный спектр трехчастичного оператора Шредингера на решетке. Теор. и мат. физ., 135:3, (2003), 478–503.

6.         Albeverio S., Lakaev S. N., Muminov Z. I., Schrődinger Operators on Lattices. The Efimov Effect and Discrete Spectrum Asymptotics. Ann. Henri Poincaré, 5, (2004), 743–772.

7.         Albeverio S., Lakaev S. N., Rasulov T. H., On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum Asymptotics. J. Stat. Phys., 127:2, (2007), 191–220.

8.         Albeverio S., Lakaev S. N., Rasulov T. H., The Efimov Effect for a Model Operator Associated with the Hamiltonian of a non Conserved Number of Particles. Methods Func. Anal. Topol., 13:1, (2007), 1–16.

Основные термины (генерируются автоматически): оператор, гильбертово пространство, интегральный оператор, множество значений, отрицательная энергия, Предложение, функция.


Ключевые слова

интегральный оператор, гильбертово пространство с весом, оператор типа Винера-Хопфа., оператор типа Винера-Хопфа

Похожие статьи

Числовой образ линейных операторов: основные свойства и примеры

В настоящей работе сформулированы основные свойства числового образа линейного оператора в комплексном гильбертовом пространстве. Приведены несколько примеров разного характера для вычисления числового образа.

Уравнение Вайнберга для собственных функций модельного оператора, ассоциированного с системой трех частиц на решетке

Рассматривается модельный оператор, ассоциированный с системой трех частиц на решетке, взаимодействующих с помощью парных нелокальных потенциалов. Получен аналог уравнения Вайнберга для собственных функций оператора.

Об исследовании одного интегрального уравнения Вольтерра второго рода при заданных условиях

В статье рассмотрено интегральное уравнение Вольтерра второго рода с заданным ядром. Такого рода интегральные уравнения возникают при решении некоторых граничных задач для существенно-нагруженных дифференциальных параболических уравнений в неограниче...

О спектре дополнения Шура одной операторной матрицы

Рассматривается операторная матрица в прямой сумме нолчастичного, одночастичного и двухчастичного подпространств фоковского пространства. Изучаются некоторые свойства, в основном связанные с числами собственных значений, соответствующих дополнении Шу...

О достаточном условии конечности числа собственных значений двухканальной молекулярно-резонансной модели

Рассматривается самосопряженная обобщенная модель Фридрихса , которая ассоциирована гамильтонианом системы, состоящей из не более чем двух частиц. Обсуждается случай, когда существенный спектр оператора может содержать лакуны. Получено достаточное у...

Об одном свойстве уравнения Фаддеева для модельного трехчастичного дискретного оператора Шредингера

В работе рассматривается модельный дискретный оператор Шредингера описывающий системы трех квантовых частиц, движущихся на одномерной решетке и взаимодействующих с помощью парных нелокальных потенциалов. Построен аналог системы интегральных уравнен...

Об одном применение леммы Морса

В настоящей работе изучается обобщенная модель Фридрихса. На примере рассматриваемого оператора, с помощью леммы Морса получено разложение соответствующего определителя Фредгольма.

О квадратурных формулах, использующих значения производных заданного порядка

Рассмотрена задача нахождения определенного интеграла заданной функции на основе ее приближения двухточечными интерполяционными многочленами Эрмита. Получены конечные формулы для квадратур, использующие значения функции и ее производных до m-го поряд...

Об одном методе решения линейных интегральных уравнений

В этой статье изложен метод решения линейных интегральных уравнений сведением к дифференциальным уравнениям в частных производных первого порядка с запаздывающим аргументом. Преимущество изучаемого метода в том, что он анализируется на примерах разли...

Оценка погрешности кубатурных формул общего вида над фактор-пространством Соболева

В работе в пространстве -функций, заданных на сфере и обладающих квадратично суммируемыми обобщенными производными порядка , вычислены нормы функционала погрешности весовой кубатурной формулы с производными. А также исследовано выражение нормы фу...

Похожие статьи

Числовой образ линейных операторов: основные свойства и примеры

В настоящей работе сформулированы основные свойства числового образа линейного оператора в комплексном гильбертовом пространстве. Приведены несколько примеров разного характера для вычисления числового образа.

Уравнение Вайнберга для собственных функций модельного оператора, ассоциированного с системой трех частиц на решетке

Рассматривается модельный оператор, ассоциированный с системой трех частиц на решетке, взаимодействующих с помощью парных нелокальных потенциалов. Получен аналог уравнения Вайнберга для собственных функций оператора.

Об исследовании одного интегрального уравнения Вольтерра второго рода при заданных условиях

В статье рассмотрено интегральное уравнение Вольтерра второго рода с заданным ядром. Такого рода интегральные уравнения возникают при решении некоторых граничных задач для существенно-нагруженных дифференциальных параболических уравнений в неограниче...

О спектре дополнения Шура одной операторной матрицы

Рассматривается операторная матрица в прямой сумме нолчастичного, одночастичного и двухчастичного подпространств фоковского пространства. Изучаются некоторые свойства, в основном связанные с числами собственных значений, соответствующих дополнении Шу...

О достаточном условии конечности числа собственных значений двухканальной молекулярно-резонансной модели

Рассматривается самосопряженная обобщенная модель Фридрихса , которая ассоциирована гамильтонианом системы, состоящей из не более чем двух частиц. Обсуждается случай, когда существенный спектр оператора может содержать лакуны. Получено достаточное у...

Об одном свойстве уравнения Фаддеева для модельного трехчастичного дискретного оператора Шредингера

В работе рассматривается модельный дискретный оператор Шредингера описывающий системы трех квантовых частиц, движущихся на одномерной решетке и взаимодействующих с помощью парных нелокальных потенциалов. Построен аналог системы интегральных уравнен...

Об одном применение леммы Морса

В настоящей работе изучается обобщенная модель Фридрихса. На примере рассматриваемого оператора, с помощью леммы Морса получено разложение соответствующего определителя Фредгольма.

О квадратурных формулах, использующих значения производных заданного порядка

Рассмотрена задача нахождения определенного интеграла заданной функции на основе ее приближения двухточечными интерполяционными многочленами Эрмита. Получены конечные формулы для квадратур, использующие значения функции и ее производных до m-го поряд...

Об одном методе решения линейных интегральных уравнений

В этой статье изложен метод решения линейных интегральных уравнений сведением к дифференциальным уравнениям в частных производных первого порядка с запаздывающим аргументом. Преимущество изучаемого метода в том, что он анализируется на примерах разли...

Оценка погрешности кубатурных формул общего вида над фактор-пространством Соболева

В работе в пространстве -функций, заданных на сфере и обладающих квадратично суммируемыми обобщенными производными порядка , вычислены нормы функционала погрешности весовой кубатурной формулы с производными. А также исследовано выражение нормы фу...

Задать вопрос