Об исследовании одного интегрального уравнения Вольтерра второго рода при заданных условиях | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Библиографическое описание:

Есбаев, А. Н. Об исследовании одного интегрального уравнения Вольтерра второго рода при заданных условиях / А. Н. Есбаев, Г. А. Есенбаева, А. А. Смаилова, Н. К. Турсынгалиев. — Текст : непосредственный // Молодой ученый. — 2016. — № 10 (114). — С. 7-10. — URL: https://moluch.ru/archive/114/30057/ (дата обращения: 16.12.2024).



В статье рассмотрено интегральное уравнение Вольтерра второго рода с заданным ядром. Такого рода интегральные уравнения возникают при решении некоторых граничных задач для существенно-нагруженных дифференциальных параболических уравнений в неограниченной области.

Ключевые слова:интегральные уравнения Вольтерра второго рода, модифицированная функция Бесселя, неполная гамма-функция, обобщенная гипергеометрическая функция, символ Похгаммера.

При отыскании решений некоторых граничных задач для существенно-нагруженного дифференциального параболического уравнения естественным образом возникает необходимость исследования интегральных уравнений Вольтерра второго рода следующего вида [1]

, (1)

где — числовой параметр уравнения, — известная функция, определенная на промежутке , ядро интегрального уравнения (1) имеет вид

,

,(2)

, (3)

причем — модифицированная функция Бесселя, — числовой параметр, , — заданная, принимающая положительные значения функция, — искомая функция.

Функция определяет ядро интегрального уравнения (1). Вычислим функцию и представим различные ее интерпретации.

Учитывая, что [2]

при ; , где , , — символ Похгаммера, из (3) получим

,

. (4)

Подставив (4) в (2), получим следующее представление функции

.

Для функции , можно получить другое соотношение, используя интегральное представление модифицированной функции Бесселя [2]

. (5)

Учитывая, что [2]

при , , соотношение () преобразуем к виду

, (6)

, (7).

Так как [2]

, где ,

то

.

.

Учитывая нечетность и четность подынтегральных функций в первом и во втором интегралах последнего соотношения, получим

. Так как [80]

при ; ,

где — обобщенная гипергеометрическая функция, — вырожденная гипергеометрическая функция, , , — символ Похгаммера, , , то соотношение для примет вид

=

. (8)

Представление (6) с учетом (7) и (8) получим в виде

.

Учитывая свойства гамма-функции и бета-функции перепишем последнее соотношение для следующим образом

,

. (9)

Подставляя (9) в (3), получим следующее представление для функции

,

Используя различные представления функции ядра интегрального уравнения, исследуются вопросы разрешимости интегрального уравнения (1).

Литература:

  1. Есбаев А. Н., Есенбаева Г. А., Об одной граничной задаче для нагруженного дифференциального оператора теплопроводности при неподвижной точку нагрузки //Вестник Карагандинского государственного университета. Серия Математика. — 2013. — № 2. — С. 65–69
  2. Прудников А. П., Брычков Ю. А., Марычев О. И. Интегралы и ряды. В 3 т. Т. 2. Специальные функции. Москва, 2003, 664 с.
Основные термины (генерируются автоматически): интегральное уравнение, модифицированная функция, вид, обобщенная гипергеометрическая функция, последнее соотношение, функция.


Ключевые слова

интегральные уравнения Вольтерра второго рода, модифицированная функция Бесселя, неполная гамма-функция, обобщенная гипергеометрическая функция, символ Похгаммера., символ Похгаммера

Похожие статьи

Об одном методе решения линейных интегральных уравнений

В этой статье изложен метод решения линейных интегральных уравнений сведением к дифференциальным уравнениям в частных производных первого порядка с запаздывающим аргументом. Преимущество изучаемого метода в том, что он анализируется на примерах разли...

Регуляризация решения неклассического интегрального уравнения со условиями Липшица

Модели многих задачи прикладного характера сводятся к уравнением, среди которых неклассические уравнения представляют особые интересы и мало изучены. В данной работе построено регуляризирующее уравнение для неклассического интегрального уравнения Вол...

Об одном свойстве уравнения Фаддеева для модельного трехчастичного дискретного оператора Шредингера

В работе рассматривается модельный дискретный оператор Шредингера описывающий системы трех квантовых частиц, движущихся на одномерной решетке и взаимодействующих с помощью парных нелокальных потенциалов. Построен аналог системы интегральных уравнен...

О достаточном условии конечности числа собственных значений двухканальной молекулярно-резонансной модели

Рассматривается самосопряженная обобщенная модель Фридрихса , которая ассоциирована гамильтонианом системы, состоящей из не более чем двух частиц. Обсуждается случай, когда существенный спектр оператора может содержать лакуны. Получено достаточное у...

О методе решения линейных интегральных уравнений сведением к дифференциальным уравнениям в частных производных высшего порядка с запаздывающим аргументом

Эта статья посвящена изложению метода решения линейных интегральных уравнений сведением к дифференциальным уравнениям в частных производных высшего порядка с запаздывающим аргументом. Преимущество изучаемого метода анализируется на примерах различной...

Сингулярные интегральные уравнения со сдвигом Карлемана с рациональными коэффициентами

Рассматриваются вопросы разрешимости сингулярных интегральных уравнений с дробно-линейным сдвигом Карлемана в случае, когда коэффициенты уравнения рациональные функции.

Уравнение Вайнберга для собственных функций модельного оператора, ассоциированного с системой трех частиц на решетке

Рассматривается модельный оператор, ассоциированный с системой трех частиц на решетке, взаимодействующих с помощью парных нелокальных потенциалов. Получен аналог уравнения Вайнберга для собственных функций оператора.

Структура численного диапазона обобщенной модели Фридрихса

В работе рассматривается ограниченная самосопряженная обобщенная модель Фридрихса. Показывается, что замыкание численного диапазона этой модели состоит из отрезка и исследован его структура.

Исследование задачи Коши для некоторого возмущенного алгебро-дифференциального уравнения первого порядка на явление погранслоя

Рассматривается задача Коши для алгебро-дифференциального уравнения первого порядка, возмущенного операторной добавкой в правой части, содержащей малый параметр. Перед производной находится вырожденный операторный коэффициент. Этот коэффициент являет...

Числовой образ линейных операторов: основные свойства и примеры

В настоящей работе сформулированы основные свойства числового образа линейного оператора в комплексном гильбертовом пространстве. Приведены несколько примеров разного характера для вычисления числового образа.

Похожие статьи

Об одном методе решения линейных интегральных уравнений

В этой статье изложен метод решения линейных интегральных уравнений сведением к дифференциальным уравнениям в частных производных первого порядка с запаздывающим аргументом. Преимущество изучаемого метода в том, что он анализируется на примерах разли...

Регуляризация решения неклассического интегрального уравнения со условиями Липшица

Модели многих задачи прикладного характера сводятся к уравнением, среди которых неклассические уравнения представляют особые интересы и мало изучены. В данной работе построено регуляризирующее уравнение для неклассического интегрального уравнения Вол...

Об одном свойстве уравнения Фаддеева для модельного трехчастичного дискретного оператора Шредингера

В работе рассматривается модельный дискретный оператор Шредингера описывающий системы трех квантовых частиц, движущихся на одномерной решетке и взаимодействующих с помощью парных нелокальных потенциалов. Построен аналог системы интегральных уравнен...

О достаточном условии конечности числа собственных значений двухканальной молекулярно-резонансной модели

Рассматривается самосопряженная обобщенная модель Фридрихса , которая ассоциирована гамильтонианом системы, состоящей из не более чем двух частиц. Обсуждается случай, когда существенный спектр оператора может содержать лакуны. Получено достаточное у...

О методе решения линейных интегральных уравнений сведением к дифференциальным уравнениям в частных производных высшего порядка с запаздывающим аргументом

Эта статья посвящена изложению метода решения линейных интегральных уравнений сведением к дифференциальным уравнениям в частных производных высшего порядка с запаздывающим аргументом. Преимущество изучаемого метода анализируется на примерах различной...

Сингулярные интегральные уравнения со сдвигом Карлемана с рациональными коэффициентами

Рассматриваются вопросы разрешимости сингулярных интегральных уравнений с дробно-линейным сдвигом Карлемана в случае, когда коэффициенты уравнения рациональные функции.

Уравнение Вайнберга для собственных функций модельного оператора, ассоциированного с системой трех частиц на решетке

Рассматривается модельный оператор, ассоциированный с системой трех частиц на решетке, взаимодействующих с помощью парных нелокальных потенциалов. Получен аналог уравнения Вайнберга для собственных функций оператора.

Структура численного диапазона обобщенной модели Фридрихса

В работе рассматривается ограниченная самосопряженная обобщенная модель Фридрихса. Показывается, что замыкание численного диапазона этой модели состоит из отрезка и исследован его структура.

Исследование задачи Коши для некоторого возмущенного алгебро-дифференциального уравнения первого порядка на явление погранслоя

Рассматривается задача Коши для алгебро-дифференциального уравнения первого порядка, возмущенного операторной добавкой в правой части, содержащей малый параметр. Перед производной находится вырожденный операторный коэффициент. Этот коэффициент являет...

Числовой образ линейных операторов: основные свойства и примеры

В настоящей работе сформулированы основные свойства числового образа линейного оператора в комплексном гильбертовом пространстве. Приведены несколько примеров разного характера для вычисления числового образа.

Задать вопрос