Отправьте статью сегодня! Журнал выйдет 12 июля, печатный экземпляр отправим 16 июля
Опубликовать статью

Молодой учёный

Регуляризация решения неклассического интегрального уравнения со условиями Липшица

Математика
16.04.2016
69
Поделиться
Библиографическое описание
Чоюбеков, С. М. Регуляризация решения неклассического интегрального уравнения со условиями Липшица / С. М. Чоюбеков. — Текст : непосредственный // Молодой ученый. — 2016. — № 8 (112). — С. 34-38. — URL: https://moluch.ru/archive/112/27868/.


Модели многих задачи прикладного характера сводятся к уравнением [2], среди которых неклассические уравнения представляют особые интересы и мало изучены. В данной работе построено регуляризирующее уравнение для неклассического интегрального уравнения Вольтерра I рода в пространстве непрерывных функций с условием Липшица [6].

Models of many problems of applied nature are reduced to the equation [2], including non-classical equations of special interest and are poorly understood. In this paper we built a regularizing equation for non-classical Volterra integral equation of type I in the space of continuous functions with Lipchitz condition [6].

Расмотрим интегральное уравнение

(1)

где при всех и известные фунции в области и на отрезке соответственно

Уравнение вида (1) возникает при решении многих прикладных задач [2], [4]. Однако, уравнения такого типа значительно менее исследованы, чем классические уравнения Вольтерра I рода.

В данной работе в предположении следуя по методу предположенному М. Иманалиевым и А. Асановым [1] строится регуляризация (1) в ппространстве непрерывных функций.

Следуя по методике предложенный в [1]- [4] и развитат в [5] строим регуляризация уравнение для (1).

Лемма 1. (Обобщенная формула Дирихле). Пусть cтрого возрастающая функция на при всех Тогда для любого

где обратная функция к

Доказательство. Доказательство вытекает из следующего графика:

Предполагаем выполнение следующих условий

10 при почти всех

20 и при всех

30 Функция удовлетворяет условию Липщица по т. е. и при всех - const.

Наряду с уравнением (1) рассмотрим уравнение

(2)

где, - решение уравнения (1).

Его решение будем искать в виде (3)

Тогда из (2) имеем .

Последнее перепишем в следующем виде

(4)

Используя резольвенту ядра из (4) получим

Из последнего переходим

(5)

Применим обобщенную формулу Дирихле и преобразуем двойные интегралы в (5):

(6)

(7)

(8)

(9)

В силу (6)-(9) уравнение (5) примет вид

(10)

Введем обозначения

(11)

(12)

(13)

(14)

Учитывая обозначения (11)-(14) уравнение (10) запишем в следующем виде

(15)

Далее нам понадобится следующая лемма.

Лемма 2. Пусть выполняются условия 10- 30 и функции и определены формулами (11), (12) и (13) соответственно. Тогда справедливы следующие оценки:

1) (16)

где

2)(17)

3)(18)

Доказательство. 1) Учитывая (11) и сделав подстановку имеем

2) Учитывая условия и , из (12) получим

Отсюда, интегрируя по частям, имеем

3) Учитывая условия 20 и 30, интегрируя по частям, из (13) имеем

Лемма 2 доказана.

Лемма 3. Пусть выполняются условия 20 и определена по формуле (14). Тогда:

Если то

(19)

где

Доказательство: Пусть Тогда из (14) имеем

(20)

Если то

(21)

Из оценки (20) и (21) вытекает оценка (19).

Лемма 3 доказана.

Теорема 1. Пусть выполняются условия 10–30 и где Тогда: если уравнение (1) имеет решение то решение уравнения (2) при сходится по норме к решению . При этом справедлива оценка

(22)

где

Доказательство. В силу оценки (16), (17), (18) из уравнения (15), имеем

Отсюда имеем

(23)

Применяя неравенство Гронуолла-Беллмана, из (23) имеем

Отсюда вытекает

(24)

В силу оценки (19), из (24) получим требуемые оценки (22). Теорема 1 доказана.

Литература:

  1. Лавреньтев М.М. Об интегральных уравнениях первого рода //ДАН. 1959. Т. 127. № 1. С. 31-33.
  2. Апарцин А.С. Неклассические упавнения Вольтера I рода. Теория и численные методы.
  3. Глушков В.М., Иванов В.В., Яненко В.М. Моделирование развивающихся систем. –М.: Наука 198-350 с.
  4. Иманалиев М.И., Асанов А. О решениях систем нелинейных интегральных уравнений Вольтерра первого рода // ДАН 1989. Т. 309. № 5. С. 1052-1055.
  5. Иманалиев М.И., Асанов А. Регуляризация и единственность решений систем нелинейных интегральных уравнений третьего рода // ДАН 2007. Т. 415. № 1. С. 14-17.
  6. Иманалиев М.И., Асанов А. Регуляризация, единственность и существование решения для интегральных уравнений первого рода //Исслед. по интегро-дифференц. уравнениям.-Фрунзе: Илим 1988,-вып.21-С.3-38.
  7. Асанов А., Бекешов Т.О., Чоюбеков С.М. Регуляризация и единственность решения неклассического интегрального уравнения с условием Липшица// Спец. выпуск, Вестник КНУ 2011. стр. 108-122.
  8. Асанов А., Бекешов Т.О., Чоюбеков С.М. О решении неклассического интегрального уравнения I рода в пространстве непрерывных функции// Вестник ОшГУ-3 2012. стр. 48-54.
  9. Асанов А., Бекешов Т.О., Чоюбеков С.М. Об одном классе неклассического интегрального уравнения вольтерра I рода// Вестник ОшГУ-3 202. стр. 83-88.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №8 (112) апрель-2 2016 г.
Скачать часть журнала с этой статьей(стр. 34-38):
Часть 1 (cтр. 1 - 137)
Расположение в файле:
стр. 1стр. 34-38стр. 137

Молодой учёный