Библиографическое описание:

Расулов Т. Х., Бахронов Б. И. О спектре тензорной суммы моделей Фридрихса // Молодой ученый. — 2015. — №9. — С. 17-20.

Модельный оператор, ассоциированный с системой трех частиц на d-мерной решетке рассматривается как тензорная сумма моделей Фридрихса. Найден явный вид существенного и дискретного спектра.

Ключевые слова: модельный оператор, тензорная сумма, модель Фридрихса, определитель Фредгольма, существенный и дискретные спектры.

 

Пусть  и  бесконечномерные гильбертовы пространства и  их тензорное произведение. Рассмотрим линейные ограниченные самосопряженные операторы  и , действующие в  и , соответственно. Обозначим через  тензорное произведение операторов  и . Оператор  также является линейным ограниченным самосопряженным оператором, действующим в гильбертовом пространстве . Положим  где  и  — тождественные операторы в  и , соответственно. Оператор  мы будем называть тензорной суммой  и , и будем обозначать через . Оператор  также является линейным ограниченным самосопряженным оператором, действующим в гильбертовом пространстве . Для спектра оператора  имеет место равенства [1]

.

Очевидно, что если  и  то .

В моделях физики твердого тела [2,3], а также решетчатой теории поля [4,5] возникают так называемые дискретные операторы Шредингера, являющиеся решетчатым аналогом обычного оператора Шредингера в непрерывном пространстве. Все гамильтонианы этих моделей коммутируют с группой трансляций на решетке. Однако, большое количество интересных задач в физики твердого тела связаны с неидеальными кристаллами, трансляционная инвариантность которых нарушена примесями или дефектами, т. е. один или конечное число узлов решетки оказываются выделенными.

Исследование спектров операторов Шредингера является наиболее интенсивно изучаемым объектом в теории операторов. Одним из важных вопросов в спектральном анализе таких операторов является изучение конечности числа собственных значений, лежащих вне существенного спектра.

В работе [6] изучены спектральные свойства решетчатого гамильтониана  физической системы, состоящей из двух свободных электронов и одной примеси на решетке. Гамильтониан  в импульсном представлении действует в тензорном произведении  гильбертово пространства , где  — -мерный тор, и он представляется в виде , где  — оператор умножения на функцию  (как невозмущенный оператор), а оператор  (т. е. некомпактное возмущение) действует по формуле

.

Здесь  — аналитическая функция на  и , а  — дельта функция Дирака.

В настоящей работе рассмотрим специальный случай:

.

Данная работа посвящена изучению существенного и дискретного спектров операторов  в рассматриваемом специальным случае. С помощью тензорной структуры изучен спектр оператора .

Пусть  — гильбертово пространство квадратично-интегрируемых симметричных (комплекснозначных) функций, определенньх на . В гильбертовом пространстве  рассмотрим гамильтониан , действующий по формуле

.

При этом ;  и  — вещественнозначные непрерывные функции на  В этих предположениях оператор  является ограниченным и самосопряженным в .

Наряду с оператором , рассмотрим еще оператор  действующий в гильбертовом пространстве  по формуле , где

, , .

Из определения операторов  и  получим, что оператор  можно представит как тензорная сумма  Здесь  означает тождественный оператор в .

В данной работе будем изучать спектральные свойства оператора  с помощью тензорной суммы операторов.

Оператор возмущения  оператора  является самосопряженным оператором ранга не более, чем . Из известной теоремы Г. Вейля о сохранении существенного спектра при возмущениях конечного ранга вытекает, что существенный спектр  оператора  совпадает с существенным спектром оператора . Известно, что , где числа  и  определяются равенствами

.

Из последних двух фактов следует, что .

Определим регулярные в области  функции

  

где

.

Видно, что  при всех .

Установим связь между собственными значениями оператора  и нулями функции

Лемма 1. Число  является собственным значением оператора  тогда и только тогда, когда

Доказательство. Пусть число  есть собственное значение оператора ,  — соответствующая собственная функция. Тогда функция  удовлетворяет уравнению

.                                                                    (1)

Заметим, что для любых  имеет место соотношение  Тогда из уравнения (1) для  имеем

,                                                                                            (2)

где

.                                                                                       (3)

Подставляя выражение (2) для  в равенства (3), получим, что уравнение (1) имеет ненулевое решение тогда и только тогда, когда система  линейных уравнений с  неизвестными

имеют ненулевое решение , т. е. когда  где - декартова -ная степень множества  Лемма 1 доказана.

Из леммы 1 вытекает, что имеет место равенство

.

Следовательно, функция  является определителем Фредгольма, ассоциированным с оператором .

Для любого  и ограниченного самосопряженного оператора , действующего в гильбертовом пространстве  обозначим через  такое подпространство, что  для любого  и положим  Число равно бесконечности, если  и если число  конечно, то оно равно числу собственных значений оператора  (с учетом кратности), меньших чем .

Следующая лемма описывает число и местонахождение собственных значений оператора

Лемма 2. Оператор  может иметь не более чем п собственных значений (с учетом кратности), лежащих левее  и не имеет собственных значений, лежащих правее .

Доказательство. Так как  является -мерным оператором, в силу теоремы 9.3.3 из книги [7] имеем

,

.

Учитывая равенство , получим, что . Следовательно,

Из  следует, что при всех  и  имеет место cоотношение

.

Это означает, что оператор  не имеет собственных значений, лежащих правее  т. е. . Лемма 2 доказана.

Теперь сформулируем основной результат работы.

Теорема 1. а) Если , то .

б) Пусть . Предположим, что . Тогда имеет место равенства

.

Доказательство. Как отметили выше из определения операторов  и  получим, что оператор  можно представит как тензорная сумма . Поэтому для спектра оператора  имеем

.                                                (4)

Если , и следовательно, , то .

Пусть теперь. По предположению . Теперь соотношение (4) завершает доказательство теоремы 1.

Из утверждения б) теоремы 1 следует, что множество  представляет собой объединение не более чем  отрезков, а число собственных значений (с учетом кратности) не превосходит чем , т. е. .

 

Литература:

 

1.      М. Рид, Б. Саймон, Методы современной математической физики, т. 4. Анализ операторов, М.: Мир. 1982.

2.      D. C. Mattis. The few-body problem on lattice // Rev.Modern Phys., — 1986, — V. 58, P. 361–379.

3.      A. I. Mogilner. Hamiltonians in solid state physics as multiparticle discrete Schroedinger operators: problems and results // Advances in Sov. Math., — 1991, — V. 5, P. 139–194.

4.      В. А. Малышев, Р. А. Минлос. Кластеpные опеpатоpы // Тpуды семинаpа им. И. Г. Петpовского. — 1983, — Вып. 9, С. 63–80.

5.      С. Н. Лакаев, Р. А. Минлос. О связанных состояниях кластерного оператора. Теоретическая и математическая физика, — 1979, — Т. 39, С. 83–92.

6.      Ю. Х. Эшкабилов. Об одном некомпактном возмущении в непрерывном спектре оператора умножения на функцию // Узб. матем. журнал, — 2003, — № 1, С. 81–88.

7.      М. Ш. Бирман, М. З. Саломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве. Издательство ЛГУ, Ленинград, 1980.

Обсуждение

Социальные комментарии Cackle