Линейные уравнения | Статья в журнале «Школьная педагогика»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Авторы: , ,

Рубрика: Теория образования и обучения, дидактика

Опубликовано в Школьная педагогика №2 (5) апрель 2016 г.

Дата публикации: 26.01.2016

Статья просмотрена: 4004 раза

Библиографическое описание:

Парканова, С. И. Линейные уравнения / С. И. Парканова, С. Н. Ревтова, Т. М. Котлярова. — Текст : непосредственный // Школьная педагогика. — 2016. — № 2 (5). — С. 19-22. — URL: https://moluch.ru/th/2/archive/27/615/ (дата обращения: 17.12.2024).



Математика — это язык, на котором говорят все точные науки.

Н. И. Лобачевский

Введение.

Математика — предмет, без которого не могут быть изучены, ни одно явление, ни один процесс в окружающем мире. Применение математических исчислений, в том числе линейных уравнений, являются составной частью в новых научных исследованиях и вносят большой вклад в развитие современной науки и технического прогресса в целом.

Актуальность: Уравнения в математике занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

Цель:

Изучить свойства линейных уравнений;

Отрабатывать навыки решения линейных уравнений.

Исторический экскурс.

Кто придумал уравнения?

Ответить на этот вопрос невозможно! Задачи, приводящие к решению простейших уравнений, люди решали на основе здравого смысла. Еще 3–4 тысячи лет до нашей эры египтяне и вавилоняне умели решать простейшие уравнения, вид которых не был похож на современные. Греки унаследовали знания египтян, и пошли дальше. Наибольших успехов в развитии учения об уравнениях достиг греческий ученый Диофант

“Он уйму всяких разрешил проблем.

И засухи предсказывал и ливни.

Поистине его познанья дивны”

Большой вклад внес среднеазиатский ученый Мухаммед аль Хорезми (IX век). –среднеазиатский математик, астроном, историк, географ — один из крупнейших ученых средневековья.

Его труды по арифметике, изложенные в «Книге об индийском счете», привели к грандиозным последствиям в науке вообще и древней математики в частности. Внес вклад в преобразование линейных уравнений.

Жаутыков Орымбек Ахметбекович (1911–1989г)

Ученый — математик. Внес значительный вклад в развитие математических наук. Академик Национальной Академии наук Республики Казахстан. Доктор физико-математических наук, профессор. Автор первого национального учебника по высшей математике. Основные научные труды посвящены математическим уравнениям, теоретической и прикладной механике.

Линейные уравнения содной переменной

Равенство, содержащее неизвестное число, обозначенной буквой, называется — уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа от знака равенства, — правой частью уравнения. Каждое слагаемое левой и правой части уравнения называется членом уравнения.

Уравнение вида: ax+b=0

Называется линейным уравнением с одной переменной

(где х-переменная, а и b некоторые числа).

Х-переменная входит в уравнение обязательно в первой степени!

Корнем уравнения называется, то значение неизвестного, при котором это уравнение обращается в верное числовое равенство.

Уравнение может иметь один корень: 3x+5=0

Несколько корней: y(y-2)(5+2y) = 0 Бесконечно много корней: 7(x+1) = 7x+7 Уравнение может не иметь корней: x+3=x

Решить линейное уравнениеэто значит найти все его корни или установить, что их нет. При решении уравнений могут быть использованы свойства уравнения:

  1. Корни уравнения не изменяются, если любой член уравнения перенести из одной части уравнения в другую, изменив при этом знак на противоположный.
  2. Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю.

Решение многих уравнений сводится к решению линейных уравнений.

При решении уравнений используют свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится равносильное уравнение.

Если обе части уравнения умножить или разделить на одно и то же число

(не равное нулю), то получится равносильное уравнение.

Алгоритм решения линейного уравнения

  1. Раскрыть скобки в обеих частях уравнения;
  2. Перенести слагаемые, содержащие переменную в одну часть, а не содержащую в другую;
  3. Привести подобные члены в каждой части;
  4. Разделить обе части на коэффициент при переменной.

Рассмотрим решение уравнения:

(13х-15)-(9+6х)=-3х

Раскроем скобки:

13х-15–9-6х=-3х.

Перенесём с противоположными знаками неизвестные члены в левую, а известные — в правую часть уравнения, тогда получим уравнение:

13х-6х+3х=15+9.

Приведём подобные слагаемые.

10х=24.

Разделим обе части уравнения на коэффициент при неизвестном.

х=2,4

Ответ: 2,4

Так же вашему вниманию представлены следующие решения уравнений:

8у -3(2y-3) = 7y — 2(5y + 8)

8у — 6у + 9 = 7у — 10у -16

8y — 6y — 7y + 10y = -16–9

5y= -25

y= -25: 5

у= — 5

(0,5х + 1,2)-(3,6–4,5х)=(4,8–0,3х)+(10,5х + 0,6)

0,5х + 1,2–3,6 + 4,5х = 4,8–0,3х + 10,5х + 0,6

0,5х + 4,5х + 0,3х — 10,5х = 4,8 + 0,6–1,2 + 3,6

—5,2х = 7,8

х= -1,5 Ответ: -1,5

5(3х+1,2) + х = 6,8,

15х + 6 + х = 6,8,

15х + х = 6,8–6,

16х = 0,8,

х = 0,8: 16,

х = 0,05, Ответ: 0,05

5,6–7у = — 4(2у — 0,9) + 2, 4,

5,6–7у = — 8у + 3, 6 + 2,4,

8у — 7у = 3,6 + 2.4–5,6,

у = 0,4, Ответ: 0,4

—3(у + 2,5) = 6,9–4,2у,

— 3у — 7,5 = 6,9–4,2у,

4,2у — 3у = 6,9 + 7,5,

1,2у = 14,4,

у = 14,4: 1,2,

у = 12, Ответ: 12

3 (х + 6) + 4 = 8 — (5х + 2)

3х + 18 + 4 = 8–5х — 2

3х + 5х = — 18–4 + 8–2

8х = — 16

х = — 16: 8

х = — 2

Ответ: -2

Задачи на составление линейных уравнений содной переменной.

Решение задач с помощью уравнений состоит из нескольких этапов:

  1. неизвестную величину, значение которой мы хотим определить, обозначаем буквой, например x;
  2. используя эту букву и имеющиеся в задаче данные, составляем математическую модель, где два разных выражения равны друг другу;
  3. записывая эти выражения через знак равно, мы получаем уравнение,решение которого поможет найти ответ к задаче;
  4. если необходимо, выполняем дополнительные действия для нахождения ответа к задаче.

Задача: В холодильнике в общей сложности 19 куриных и перепелиных яиц. После приготовления яичницы из 2 куриных и 5 перепелиных яиц, перепелиных стало в два раза больше, чем куриных. Сколько куриных яиц было в холодильнике изначально?

Составляем модель уравнения:

Нам надо решить, какую величину мы обозначим переменной x.

Рассмотрим вариант, где x — кур. яйца изначально;

Составляем математическую модель и уравнение.

x — кур. яйца изначально;

x — 2 — кур. яйца после;

2(x — 2) — пер. яйца после;

2(x — 2) + 5 — пер. яйца изначально;

Составляем модель уравнения:

Рассмотрим выражения, которые мы можем уравнять, сумму яиц до приготовления яичницы.

x + 2(x — 2) + 5 — сумма яиц изначально

19 — сумма яиц изначально

x + 2(x — 2) + 5 = 19 уравнение, решение которого находит ответ к задаче.

Решение:

х + 2х — 4 + 5 = 19

3х = 18

х = 18: 3

x = 6

Ответ: изначально в холодильнике было 6 куриных яиц.

Задача: По шоссе едут две автомашины с одной и той же скоростью. Если первая машина увеличит скорость на 10км в час, а вторая уменьшит на 10км в час, то первая за 2 часа пройдет столько же, сколько вторая за 3 часа. С какой скоростью едут автомашины?

Составление таблицы

Пусть х — первоначальная скорость машин, тогда (х + 10) — скорость первой машины, а (х — 10) — скорость второй машины.

Расстояние для первой машины 2(х + 10)

Расстояние для второй машины 3(х — 10)

Величины

Первичная скорость

Скорость по условию

Время

Расстояние

1 машина

х

+ 10

2

2 (х + 10)

2 машина

х

- 10

2

3 (х — 10)

Составление уравнения

Так как по условию задачи первая машина прошла за 2 часа столько же, сколько вторая за 3 часа, составим уравнение:

2(х + 10) = 3(х — 10)

Решение:

2(х + 10) = 3(х — 10)

2х + 20 = 3х — 30

2х — 3х = — 20–30

—х = — 50 Х = 50

Скорость первой машины 50+10=60км ч

Скорость второй машины 50–10=40км ч

Ответ: 1 машина — 60км ч

2 машина — 40км ч

Задача: Были куплены яблоки и груши на сумму 4200 тенге. Килограмм яблок стоит 300 тенге, а груш — 1200тенге. Сколько килограммов яблок было куплено?

Составление таблицы

Мы знаем, что 1 кг груш стоит 1200тг. Пусть х — количество купленных яблок, тогда количество купленных груш (х + 1).

Получаем, что 300х — сумма, уплаченная за яблоки, тогда 1200(х + 1) — сумма уплаченная за груши.

Величины

Цена, тг

Кол-во, кг

Стоимость, тг

Яблоки

300

х

300х

Груши

1 200

(х + 1)

1200(х + 1)

На 1 кг

Всего: 4200

Решение:

Теперь можно составить и решить уравнение:

300х + 1200(х + 1) = 4200

300х + 1200х + 1200 =4200

1500х = 3000

х = 3000: 1500

х = 2 Ответ: было куплено 2 килограмма яблок.

Выводы:

Итак, мы рассмотрели, что представляют собой линейные уравнения, их свойства и способы решения, заглянули в историю.

Научились решать линейные уравнения и задачи. Надеемся, что данный проект поможет учащимся в изучении темы «Линейные уравнения».

Литература:

  1. Т. А. Алдамуратова, Т. С. Байшоланов «Математика 6 класс» Алмата «Атамура» 2011.
  2. В. А. Гусев, А. Г. Мордкович..«Справочные материалы» Математика М. «Просвещение», 1988
  3. К. П. Сикорский. «Факультативный курс» М. «Просвещение», 1969.
Основные термины (генерируются автоматически): уравнение, часть уравнения, машина, Ответ, задача, корень уравнения, линейное уравнение, решение, решение уравнений, сумма яиц.
Задать вопрос