Пути повышения качества обучения математике студентов технических вузов | Статья в журнале «Молодой ученый»

Авторы: ,

Рубрика: Педагогика

Опубликовано в Молодой учёный №3 (83) февраль-1 2015 г.

Дата публикации: 02.02.2015

Статья просмотрена: 85 раз

Библиографическое описание:

Гудкова В. С., Ячинова С. Н. Пути повышения качества обучения математике студентов технических вузов // Молодой ученый. — 2015. — №3. — С. 755-758. — URL https://moluch.ru/archive/83/15476/ (дата обращения: 16.10.2018).

Известно, что одним из способов повышения качества обучения математике является применение в образовательном процессе методов, способствующих развитию и становлению познавательной активности и самостоятельности обучаемых. Одним из таких методов является метод наглядности.

В педагогической и методической литературе уделяется большое внимание принципу наглядности в обучении. Роль наглядности и её значение рассматривается в работах Я. А. Коменского, А. Н. Леонтьева, Г.Пестоллоци, К. Д. Ушинского, Л. М. Фридмана и др. В них особо отмечается важность применения наглядности в обучении математике, в связи с тем, что математика способствует развитию логического мышления, пространственного воображения.

В обучении математике широко применяется символическая наглядность, основу которой составляют чертежи, графики, схемы, таблицы. Наглядные пособия в процессе обучения математике используют для ознакомления с новым материалом, для формирования знаний, умений, навыков, для проверки уровня их усвоения.

При изучении дифференциальных уравнений в курсе математического анализа у студентов возникают большие трудности с их решением, особенно когда в задании не указано какое уравнение требуется решить. Студент должен сам определить вид уравнения и вспомнить метод его решения. Для овладения методами решения дифференциальных уравнений первого порядка составляется вспомогательная таблица (таблица 1), которая является опорным конспектом по данной теме.

Таблица 1

Дифференциальные уравнения первого порядка

Название уравнения

Вид уравнения

Метод интегрирования

1. С разделенными переменными

2. С разделяющимися переменными

3. Приводящиеся к уравнению с разделяющимися переменными

а) ;

а) подстановка

б) , если

б) подстановка

4. Линейные относительно

а) метод Лагранжа

б) метод Бернулли:

5. Уравнение Бернулли

Метод Бернулли:

6. Однородные

а) ;

б)

 

Подстановка

7. Приводящиеся к однородному

, если

8. В полных дифференциалах

,

9. Приводящиеся к уравнению в полных дифференциалах

, если

, но

а)

б)

а)

б)

(см.8)

 

Также большие трудности у студентов вызывает решение линейных неоднородных дифференциальных уравнений с постоянными коэффициентами. Для помощи студентам в освоении методики их решения составляется таблица соответствия вида частного решения виду правой части (таблица 2).

Таблица 2

Соответствие вида частного решение виду правой части ЛНДУ

Вид правой части

Вид частного решения

1.,  — многочлен степени n от х.

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а) ,

-многочлен той же степени, что и .

б) ,

-многочлен той же степени, что и .

2. ,  — многочлен степени n от х.

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а) ,

-многочлен той же степени, что и .

б) ,

-многочлен той же степени, что и .

3. , С,D — постоянные числа

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а),

А и В — постоянные неопределенные коэффициенты

б)  А и В — постоянные неопределенные коэффициенты

4. , - многочлен степени m,

 — многочлен степени n

а) - не корень характеристического уравнения

 

 

б) - корень характеристического уравнения кратности s.

а)

-многочлены степени r, r=max(m,n)

б)

-многочлены степени r, r=max(m,n)

 

Приведенные выше таблицы можно применять на различных этапах обучения решению дифференциальных уравнений, особенно они помогают студентам в самостоятельной работе.

Применение наглядности при обучении математике активизирует мыслительную деятельность, повышая уровень усвоения основных математических понятий и качество математической подготовки студентов, являющейся основой их профессиональной подготовки.

 

Литература:

 

1.                  Гудкова В. С., Ячинова С.Н, Новичкова Т. Ю. Наглядность как средство повышения качества обучения математике // Вестник магистратуры. — 2014. — № 12–4 (39). — С.41–43.

2.                  Крымская Ю. А., Титова Е. И., Ячинова С. Н. Построение математических моделей в прикладных задачах // Молодой ученый. — 2013. — № 12 (59). — С. 3–6.

3.                  Куимова Е. И., Куимова К. А., Ячинова С. Н. Формирование мотивационной составляющей обучения на примере изучения дифференциальных уравнений // Молодой ученый. — 2014. — № 2(61) — с.775–777.

4.                  Новичкова Т. Ю., Крымская Ю. А., Ячинова С. Н. Прикладная направленность преподавания математики как средство повышения качества обучения в военных вузах // Молодой ученый. — 2014. — № 18. — С. 619–621.

5.                  Ячинова С. Н., Гудкова В. С. Мотивация обучения студентов посредством моделирования // Молодой ученый. — 2014. — № 4 — с.1141–1144.

Основные термины (генерируются автоматически): характеристическое уравнение кратности, характеристическое уравнение, правая часть, многочлен, корень, математик, решение, студент, Дифференциальное уравнение первого порядка, вид уравнения.


Похожие статьи

Периодические решения разностного уравнения третьего порядка

Для периодичности всех решений уравнения (1) необходимо, чтобы характеристический многочлен уравнения (1). имел простые комплексно сопряженные корни, по модулю равные 1 или простой действительный корень .

Решение системы нелинейных дифференциальных уравнений...

Сведение таких систем к системам первого порядка повышает степень характеристического уравнения.

Системы линейных дифференциальных уравнений высших порядка изучены в работе [4].

Классификация линейных однородных систем...

Вообще дифференциальные уравнения и методы исследования их решений широко используются в разнообразных отраслях и разделах современной науки и техники.

1. Найти характеристический многочлен матрицы и её собственные значения.

Об асимптотическом поведении решений систем нелинейных...

Для систем нелинейных дифференциальных уравнений с медленно меняющимися коэффициентами в случае простого нулевого корня у характеристического уравнения построены формальные частных решения, обладающие асимптотическим свойством.

Ключевые слова: дифференциальные уравнения, метод...

Решение системы нелинейных дифференциальных уравнений высших порядков. Логарифмический метод решения обыкновенных дифференциальных уравнений первого порядка.

Условная устойчивость разностного уравнения третьего порядка...

Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка. Разрешимость одной краевой задачи для функционально-дифференциального уравнения второго порядка с монотонной...

Решения нелинейных волновых уравнений методом...

Ключевые слова: дифференциальные уравнения в частных проихводных, метод вариационных итераций, коррекция функционала, начальное приближение, последовательность функции, точное решение.

Построение формальных решений системы нелинейных...

В данной работе исследуются системы нелинейных дифференциальных уравнений высоких порядка вида. , (1). Где х, f-n-мерные векторы, – действительная квадратная матрица порядка -малый параметр, — натуральные числа и такие что -медленные время, фиксированное число.

Некоторые общие положения методики составления и решения...

Характеристическое уравнение системы (1) имеет вид.

Алгоритм решения прикладных задач для обыкновенных дифференциальных уравнений четвертого порядка с методом дифференциальной прогонки.

Периодические решения разностного уравнения третьего порядка

Для периодичности всех решений уравнения (1) необходимо, чтобы характеристический многочлен уравнения (1). имел простые комплексно сопряженные корни, по модулю равные 1 или простой действительный корень .

Решение системы нелинейных дифференциальных уравнений...

Сведение таких систем к системам первого порядка повышает степень характеристического уравнения.

Системы линейных дифференциальных уравнений высших порядка изучены в работе [4].

Классификация линейных однородных систем...

Вообще дифференциальные уравнения и методы исследования их решений широко используются в разнообразных отраслях и разделах современной науки и техники.

1. Найти характеристический многочлен матрицы и её собственные значения.

Об асимптотическом поведении решений систем нелинейных...

Для систем нелинейных дифференциальных уравнений с медленно меняющимися коэффициентами в случае простого нулевого корня у характеристического уравнения построены формальные частных решения, обладающие асимптотическим свойством.

Ключевые слова: дифференциальные уравнения, метод...

Решение системы нелинейных дифференциальных уравнений высших порядков. Логарифмический метод решения обыкновенных дифференциальных уравнений первого порядка.

Условная устойчивость разностного уравнения третьего порядка...

Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка. Разрешимость одной краевой задачи для функционально-дифференциального уравнения второго порядка с монотонной...

Решения нелинейных волновых уравнений методом...

Ключевые слова: дифференциальные уравнения в частных проихводных, метод вариационных итераций, коррекция функционала, начальное приближение, последовательность функции, точное решение.

Построение формальных решений системы нелинейных...

В данной работе исследуются системы нелинейных дифференциальных уравнений высоких порядка вида. , (1). Где х, f-n-мерные векторы, – действительная квадратная матрица порядка -малый параметр, — натуральные числа и такие что -медленные время, фиксированное число.

Некоторые общие положения методики составления и решения...

Характеристическое уравнение системы (1) имеет вид.

Алгоритм решения прикладных задач для обыкновенных дифференциальных уравнений четвертого порядка с методом дифференциальной прогонки.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Периодические решения разностного уравнения третьего порядка

Для периодичности всех решений уравнения (1) необходимо, чтобы характеристический многочлен уравнения (1). имел простые комплексно сопряженные корни, по модулю равные 1 или простой действительный корень .

Решение системы нелинейных дифференциальных уравнений...

Сведение таких систем к системам первого порядка повышает степень характеристического уравнения.

Системы линейных дифференциальных уравнений высших порядка изучены в работе [4].

Классификация линейных однородных систем...

Вообще дифференциальные уравнения и методы исследования их решений широко используются в разнообразных отраслях и разделах современной науки и техники.

1. Найти характеристический многочлен матрицы и её собственные значения.

Об асимптотическом поведении решений систем нелинейных...

Для систем нелинейных дифференциальных уравнений с медленно меняющимися коэффициентами в случае простого нулевого корня у характеристического уравнения построены формальные частных решения, обладающие асимптотическим свойством.

Ключевые слова: дифференциальные уравнения, метод...

Решение системы нелинейных дифференциальных уравнений высших порядков. Логарифмический метод решения обыкновенных дифференциальных уравнений первого порядка.

Условная устойчивость разностного уравнения третьего порядка...

Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка. Разрешимость одной краевой задачи для функционально-дифференциального уравнения второго порядка с монотонной...

Решения нелинейных волновых уравнений методом...

Ключевые слова: дифференциальные уравнения в частных проихводных, метод вариационных итераций, коррекция функционала, начальное приближение, последовательность функции, точное решение.

Построение формальных решений системы нелинейных...

В данной работе исследуются системы нелинейных дифференциальных уравнений высоких порядка вида. , (1). Где х, f-n-мерные векторы, – действительная квадратная матрица порядка -малый параметр, — натуральные числа и такие что -медленные время, фиксированное число.

Некоторые общие положения методики составления и решения...

Характеристическое уравнение системы (1) имеет вид.

Алгоритм решения прикладных задач для обыкновенных дифференциальных уравнений четвертого порядка с методом дифференциальной прогонки.

Периодические решения разностного уравнения третьего порядка

Для периодичности всех решений уравнения (1) необходимо, чтобы характеристический многочлен уравнения (1). имел простые комплексно сопряженные корни, по модулю равные 1 или простой действительный корень .

Решение системы нелинейных дифференциальных уравнений...

Сведение таких систем к системам первого порядка повышает степень характеристического уравнения.

Системы линейных дифференциальных уравнений высших порядка изучены в работе [4].

Классификация линейных однородных систем...

Вообще дифференциальные уравнения и методы исследования их решений широко используются в разнообразных отраслях и разделах современной науки и техники.

1. Найти характеристический многочлен матрицы и её собственные значения.

Об асимптотическом поведении решений систем нелинейных...

Для систем нелинейных дифференциальных уравнений с медленно меняющимися коэффициентами в случае простого нулевого корня у характеристического уравнения построены формальные частных решения, обладающие асимптотическим свойством.

Ключевые слова: дифференциальные уравнения, метод...

Решение системы нелинейных дифференциальных уравнений высших порядков. Логарифмический метод решения обыкновенных дифференциальных уравнений первого порядка.

Условная устойчивость разностного уравнения третьего порядка...

Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка. Разрешимость одной краевой задачи для функционально-дифференциального уравнения второго порядка с монотонной...

Решения нелинейных волновых уравнений методом...

Ключевые слова: дифференциальные уравнения в частных проихводных, метод вариационных итераций, коррекция функционала, начальное приближение, последовательность функции, точное решение.

Построение формальных решений системы нелинейных...

В данной работе исследуются системы нелинейных дифференциальных уравнений высоких порядка вида. , (1). Где х, f-n-мерные векторы, – действительная квадратная матрица порядка -малый параметр, — натуральные числа и такие что -медленные время, фиксированное число.

Некоторые общие положения методики составления и решения...

Характеристическое уравнение системы (1) имеет вид.

Алгоритм решения прикладных задач для обыкновенных дифференциальных уравнений четвертого порядка с методом дифференциальной прогонки.

Задать вопрос