Задачи с параметрами в школьном курсе математики | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 22 августа, печатный экземпляр отправим 9 сентября.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Педагогика

Опубликовано в Молодой учёный №25 (315) июнь 2020 г.

Дата публикации: 22.06.2020

Статья просмотрена: 14 раз

Библиографическое описание:

Горностаев, О. М. Задачи с параметрами в школьном курсе математики / О. М. Горностаев, К. В. Горбачевская. — Текст : непосредственный // Молодой ученый. — 2020. — № 25 (315). — С. 385-388. — URL: https://moluch.ru/archive/315/72002/ (дата обращения: 08.08.2020).



Актуальность выбранной темы обусловлена необходимостью в школьном курсе математики уделять большее количество времени теме «Задачи с параметрами».

Ключевые слова: параметр, задачи с параметрами.

Выпускнику школы полезно владеть различными методами решения задач — аналитическими и графическими, уметь переводить словесное условие задачи в аналитическую форму — сводить ее к решению уравнений, неравенств и систем и совокупностей уравнений и неравенств. К сожалению, в программах по математике для неспециализированных школ задачам с параметром практически не отводится места, а, например, в учебнике для учащихся школ и классов с углубленным изучением курса математики («Алгебра и математический анализ для 10 и 11 классов», Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд) им отведено место только в 11-м классе.

Между тем, задачи с параметрами можно и нужно использовать уже начиная с линейных и квадратных уравнений и неравенств. Это могут быть задачи нахождения решений в общем виде, определения корней, удовлетворяющих каким-либо свойствам, исследования количества корней в зависимости от значений параметра. Так сделано в «Сборнике задач по алгебре для 8–9 классов», 1994 г. (авторы: М. Л. Галицкий, А. М. Гольдман, Л. И. Звавич). Важно, чтобы школьники уже на первых простых примерах усвоили: вопервых, необходимость аккуратного обращения с параметром — фиксированным, но неизвестным числом, поняли, что оно имеет двойственную природу. Во-вторых, что запись ответа существенно отличается от записи ответов аналогичных уравнений и неравенств без параметра.

Методически было бы правильно каждый пройденный тип уравнений и неравенств завершать задачами с использованием параметра. Во-первых, школьнику трудно привыкнуть к параметру за два-три занятия — нужно время. Во-вторых, использование подобных задач улучшает закрепление пройденного материала. В-третьих, оно способствует развитию его математической и логической культуры, а также развитию интереса к математике, поскольку открывает перед ним новые методы и возможности для самостоятельного поиска.

Ниже хотелось бы представить некоторые задачи с параметрами, которые в школьном курсе математики у учащихся вызывают трудности.

Задача 1: Найти все значения, которые может принимать сумма x+a, если пара чисел (x, a) является решением неравенства

Решение:

  1. ,

или , a=3x-1 или a=3x+5

  1. , x-3a+6=3 или x-3a+6=-3, или

Наибольшее значение x+a равно 1,5+3,5=5.

Наименьшее значение x+a равно -1,5+0,5=-1.

Ответ:

Задача 2: При каких значениях параметра а уравнение имеет ровно 5 корней, образующих арифметическую прогрессию?

Решение:

Один из корней данного уравнения очевидно .

Пусть при . Тогда уравнение запишется в виде

Данное квадратное уравнение будет иметь различные положительные корни, если выполняются условия:

Решением данной системы является интервал

Исходное уравнение образует арифметическую прогрессию пятью корнями данного уравнения вида:

При условие, если . Тогда, по свойству арифметической прогрессии, ее разность

По теореме Виета из квадратного уравнения

следует:

Решением этой системы будут числа ; .

Подставляя эти значения во второе уравнение системы, получаем равенство откуда (значение а=0 не удовлетворяет требованиям задачи).

Ответ: 5 корней при ; при корни уравнения образуют арифметическую прогрессию.

Задача 3: Взависимости от значений параметра a решите неравенство .

Решение:

Перепишем исходное неравенство в виде

Рассмотрим две функции (график — прямая, параллельная оси Ox) и .

Вторую функцию, раскрывая модули,можно записать так:

Графиком является ломаная. Решениями неравенства будут те значения x?при которых точки графика лежат выше точек графика .

Из рисунка получаем:

При таких точек нет;

При точки вида или ;

При решением будет промежуток (-∞; 0);

При решения получаются из неравенства или .

Ответ: если решений нет,

если : ,

если : .

Задача 4: Найдите все значения параметра t, при каждом из которых уравнение имеет корни, но ни один из них не принадлежит интервалу (4; 19).

Решение:

Представим правую часть уравнения в виде

Сделаем замену

Тогда уравнение примет вид , что равносильно условию

Уравнение имеет корни, ни один из которых не принадлежит интервалу (4; 19), за исключением, если правая граница отрезка решений не больше 4 или левая граница не меньше 19.

Получаем

Ответ:

Задача 5: При каких a уравнение

имеет ровно 4 корня?

Решение.

Заметим, что x=0 всегда будет корнем данного уравнения.

Поделим уравнение на , обозначим и потребуем, чтобы уравнение

имело ровно три корня.

Исследуем для начала функцию

.

Функция четная.

Производная при t>0 будет при .

Следовательно, функция убывает на промежутке .

Очевидно, при больших t имеем

Поэтому при .

Итак, на положительной полуоси функция убывает и принимает все значения из промежутка ровно по одному разу.

На отрицательной происходит то же самое из-за четности функции.

Обозначая за , получаем что исходное уравнение задачи примет вид

Уравнение (*) имеет единственный корень t=0 при b=2, имеет два корня (отличающихся знаком) при и не имеет корней при прочих b . Отсюда при или b>2 корней у уравнения нет.

Пусть b=2.

Тогда необходимо чтобы t=0, то есть . У данного уравнения единственный корень.

Пусть и

Нас интересует число корней уравнения .

Выясним для этого, как устроена функция .

Производная этой функции

Значит, при x>1 и при x<0, . Поэтому функция принимает все вещественные значения по одному разу на промежутке (-∞; 0), принимает дважды все положительные значения большие на промежутке (0; ∞), принимает один раз значение и не принимает других значений на этом промежутке.

Будем считать, что t>0, тогда имеет ровно один корень, значит, это уравнение должно иметь ровно два корня. Один из них будет на промежутке (-∞; 0), значит, второй должен быть на промежутке (0; ∞), причем единственным корнем.

Это возможно только если этот корень x=1 и . В этом случае корней получается ровно три, а в других случаях не получается.

Итак,

Ответ:

Литература:

  1. В. В. Локоть «Задачи с параметрами» / Издательство «Аркти» — 2005 г.
  2. А. И. Козко, В. Г. Чирский «Задачи с параметрами и другие сложные задачи» / Издательство «МЦНМО» — 2007 г.
  3. В. В. Мирошин Решение задач с параметрами. Теория и практика М.: Издательство «Экзамен», 2009г.
Основные термины (генерируются автоматически): корень, уравнение, арифметическая прогрессия, задача, единственный корень, значение параметра, параметр, решение, функция, квадратное уравнение.


Ключевые слова

параметр, задачи с параметрами

Похожие статьи

Метод коэффициентов при решении квадратных уравнений

В статье описываются нестандартные способы решения квадратных уравнений. Ключевые слова: уравнения, квадратные уравнения, способы решения квадратных уравнений. В школьном курсе математики изучается решение полных квадратных уравнений с помощью...

Метод «переброски» при решении квадратных уравнений

. Далее уравнение решают устно описанным выше способом, затем возвращаются к исходной переменной и находят корни уравнений и . Применение метода «переброски» при решении квадратных уравнений или уравнений сводящихся к ним.

Способы решения квадратных уравнений | Статья в журнале...

Наш проект посвящен способам решения квадратных уравнений. Цель проекта: научиться решать квадратные уравнения способами, не входящими в школьную программу. Задача: найти все возможные способы решения квадратных уравнений и научиться их использовать...

Оптимальные способы решения квадратных уравнений

Проблема: Решение квадратных уравнений нерациональным способом. Изучив данную тему в 8 классе, учащиеся в старших классах забывают и порой не видят неполные квадратные уравнения и решают их как полные квадратные уравнения...

Методическая разработка по математике. Тема: «Решение...»

Покажем единственный корень этого уравнения, применив графическую иллюстрацию.

уравнение, квадратное уравнение, способ решения, свободный член, решение, корень, Древняя Индия, исходное уравнение, полный квадрат, современный вид.

О корнях кубического уравнения | Статья в журнале...

Известно, что решение некоторых теоретических и практических задач, а также моделирование некоторых физических процессов требует определение границ отрезков (интервалов)...

Методы решения нелинейных уравнений | Статья в журнале...

На данном этапе значение корней уравнения, определенных ранее, уточняется.

Основные термины (генерируются автоматически): метод Ньютона, уравнение, функция, шаговый метод, приближение корня, метод решения, корень уравнения, решение уравнений, пересечение...

Решение смешанной задачи для волнового уравнения...

В этой работе приближенно решена смешанная задача для волнового уравнения методом разделения переменных, методом вариационных итераций и методом разложе-ния Адомиана. Все эти методы обеспечивает последовательность функций, которая сходится к точному...

Экстремальные свойства решений одной краевой задачи для...

Построение формальных решений системы нелинейных дифференциальных уравнений с малым параметром. Экстремальные свойства решений одной краевой задачи для системы уравнений смешанного типа. Качественное исследование двумерной системы.

Решение методом продолжения задач математической физики...

Здесь — коэффициенты уравнения, определенные в области достаточно гладкие функции

Мы знаем, что в области значение выражения может быть отрицательным, положительным или

Используя это решение, мы можем решить задачу Коши. Задача Коши: Найти решение...

Похожие статьи

Метод коэффициентов при решении квадратных уравнений

В статье описываются нестандартные способы решения квадратных уравнений. Ключевые слова: уравнения, квадратные уравнения, способы решения квадратных уравнений. В школьном курсе математики изучается решение полных квадратных уравнений с помощью...

Метод «переброски» при решении квадратных уравнений

. Далее уравнение решают устно описанным выше способом, затем возвращаются к исходной переменной и находят корни уравнений и . Применение метода «переброски» при решении квадратных уравнений или уравнений сводящихся к ним.

Способы решения квадратных уравнений | Статья в журнале...

Наш проект посвящен способам решения квадратных уравнений. Цель проекта: научиться решать квадратные уравнения способами, не входящими в школьную программу. Задача: найти все возможные способы решения квадратных уравнений и научиться их использовать...

Оптимальные способы решения квадратных уравнений

Проблема: Решение квадратных уравнений нерациональным способом. Изучив данную тему в 8 классе, учащиеся в старших классах забывают и порой не видят неполные квадратные уравнения и решают их как полные квадратные уравнения...

Методическая разработка по математике. Тема: «Решение...»

Покажем единственный корень этого уравнения, применив графическую иллюстрацию.

уравнение, квадратное уравнение, способ решения, свободный член, решение, корень, Древняя Индия, исходное уравнение, полный квадрат, современный вид.

О корнях кубического уравнения | Статья в журнале...

Известно, что решение некоторых теоретических и практических задач, а также моделирование некоторых физических процессов требует определение границ отрезков (интервалов)...

Методы решения нелинейных уравнений | Статья в журнале...

На данном этапе значение корней уравнения, определенных ранее, уточняется.

Основные термины (генерируются автоматически): метод Ньютона, уравнение, функция, шаговый метод, приближение корня, метод решения, корень уравнения, решение уравнений, пересечение...

Решение смешанной задачи для волнового уравнения...

В этой работе приближенно решена смешанная задача для волнового уравнения методом разделения переменных, методом вариационных итераций и методом разложе-ния Адомиана. Все эти методы обеспечивает последовательность функций, которая сходится к точному...

Экстремальные свойства решений одной краевой задачи для...

Построение формальных решений системы нелинейных дифференциальных уравнений с малым параметром. Экстремальные свойства решений одной краевой задачи для системы уравнений смешанного типа. Качественное исследование двумерной системы.

Решение методом продолжения задач математической физики...

Здесь — коэффициенты уравнения, определенные в области достаточно гладкие функции

Мы знаем, что в области значение выражения может быть отрицательным, положительным или

Используя это решение, мы можем решить задачу Коши. Задача Коши: Найти решение...

Задать вопрос