Моделирование САР скорости асинхронного двигателя с переменными ψr - is с контуром потока в системе относительных единиц | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Библиографическое описание:

Моделирование САР скорости асинхронного двигателя с переменными ψr - is с контуром потока в системе относительных единиц / А. А. Емельянов, В. М. Гусев, Д. И. Пестеров [и др.]. — Текст : непосредственный // Молодой ученый. — 2018. — № 11 (197). — С. 14-32. — URL: https://moluch.ru/archive/197/48797/ (дата обращения: 16.12.2024).



Моделирование САР скорости асинхронного двигателя с переменными ψr - is сконтуром потока в системе относительных единиц

Емельянов Александр Александрович, доцент;

Гусев Владимир Михайлович, магистрант;

Пестеров Дмитрий Ильич, студент;

Даниленко Дмитрий Сергеевич, студент

Российский государственный профессионально-педагогический университет (г. Екатеринбург)

Бесклеткин Виктор Викторович, магистрант

Уральский федеральный университет имени первого Президента России Б. Н. Ельцина (г. Екатеринбург)

Быстрых Денис Анатольевич, начальник конструкторско-технологического бюро

АО «Уральский турбинный завод» (г. Екатеринбург)

Иванин Александр Юрьевич, техник-метролог

НПО «НТЭС» (Республика Татарстан, г. Бугульма)

В наших статьях за 2015 г. приведены математические модели асинхронного двигателя с переменными ψr и is. Данная работа является модификацией работы [1]: произведены существенные изменения в способе вывода уравнений.

В модель САР скорости асинхронного двигателя введен наблюдатель, с помощью которого производится ориентация системы координат по потокосцеплению ротора. В модель введен контур потокосцепления ротора и исследованы характеристики системы при различных постоянных времени потокосцепления Tψ.

Векторные уравнения асинхронного двигателя имеют следующий вид:

где - электрическая скорость вращения ротора;

- механическая угловая скорость на валу двигателя.

Переводим систему уравнений к изображениям:

(1)

(2)

(3)

(4)

(5)

(6)

Схема замещения и векторная диаграмма переменных [3] приведены на рис. 1 и 2.

Рис. 1. Схема замещения асинхронного двигателя

Рис. 2. Качественная картина расположения векторов в двигательном режиме

Разложение векторных величин по проекциям:

Записываем уравнения (1) – (4) по проекциям.

Уравнение (1):

По оси (+1):

(1’)

По оси (+j):

(1”)

Уравнение (2):

По оси (+1):

(2’)

По оси (+j):

(2”)

Уравнение (3):

По оси (+1):

(3’)

По оси (+j):

(3”)

Уравнение (4):

По оси (+1):

(4’)

По оси (+j):

(4”)

Так как электромагнитный момент определяется через две переменные is и ψr, то из уравнений (1’), …, (4’) необходимо исключить переменные ir и ψs.

Из уравнения (4’) выразим irx:

Обозначим тогда:

(7)

Из уравнения (4”) выразим iry:

(8)

Подставим уравнение (7) в (3’):

Обозначим :

где

Отсюда потокосцепление ψsx определится следующим образом:

(9)

Подставим (8) в (3”):

(10)

Полученные зависимости рассмотрим в единой системе по проекции x (+1):

Подставим уравнение (7) в (2’):

(11)

Из уравнения (11) выразим слагаемое :

(12)

Для получения апериодического звена перенесем слагаемые с ψrx в левую часть:

Умножим обе части полученного уравнения на lm:

где - постоянная времени потока в машинном (ЭВМ) времени ;

- постоянная времени потока в реальном времени .

Отсюда ψrx определится в следующей форме:

(13)

Структурная схема для определения потокосцепления ψrx приведена на рис. 3.

Рис. 3. Структурная схема для определения потокосцепления ψrx

Подставим выражения ψsx и ψsy из уравнений (9) и (10) в уравнение (1’):

(14)

В полученное уравнение подставим выражение из уравнения (12):

(15)

Перенесем слагаемые с переменными isx в левую часть:

Обозначим :

где - постоянная времени статорной обмотки в машинном (ЭВМ) времени ;

- постоянная времени статорной обмотки в реальном времени .

Тогда isx определится в следующей форме:

Структурная схема для определения тока isx дана на рис. 4.

Рис. 4. Структурная схема для определения тока isx

Аналогично, система уравнений по проекции y (+j):

Подставим уравнение (8) в (2”):

(16)

Из уравнения (16) выразим :

(17)

Для получения апериодического звена перенесем слагаемые с ψry в левую часть:

Умножим обе части полученного уравнения на lm и вынесем за скобки :

Отсюда ψry определится в следующей форме:

Структурная схема для определения потокосцепления ψry приведена на рис. 5.

Рис. 5. Структурная схема для определения потокосцепления ψry

Для определения isy подставим уравнения (9) и (10) в (1”):

(18)

Подставим из (17) в полученное уравнение:

(19)

Перенесем слагаемые с переменными isy в левую часть:

Ток isy определится в следующей форме:

Структурная схема для определения isy приведена на рис. 6.

Рис. 6. Структурная схема для определения тока isy

На рис. 7 представлена структурная схема для реализации уравнения электромагнитного момента (5):

Рис. 7. Математическая модель определения электромагнитного момента m

Наконец, из уравнения движения (6) выразим механическую угловую скорость вращения вала двигателя (рис. 8):

Рис. 8. Математическая модель определения механической угловой скорости вращения вала двигателя

Электрическая скорость вращения ротора (рис. 9):

Рис. 9. Математическая модель определения электрической скорости вращения ротора

Математическая модель асинхронного двигателя с короткозамкнутым ротором с переменными is ψr на выходе апериодических звеньев приведена на рис. 10. Параметры асинхронного двигателя рассмотрены в работах [3] и [4].

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 10. Математическая модель асинхронного двигателя с переменными is – ψr на выходе апериодических звеньев

Развернутая схема САР скорости асинхронного двигателя приведена на рис. 11. Под каждым элементом развернутой схемы САР скорости указаны его номер и название.

F:\ALL\С12\2018\3. Март\2.3\myfig.meta

Рис. 11. Развернутая математическая модель САР скорости асинхронного двигателя

В контурах тока по проекциям x и y были получены одинаковые передаточные функции объектов управления:

Синтез регуляторов тока производится по классической схеме [2]:

где - компенсация объекта;

- исключение статической ошибки;

- введение новой постоянной времени контура тока.

Передаточная функция фильтра:

Принимаем настройку на модульный оптимум , тогда передаточные функции регуляторов тока по проекциям x и y:

где Tμ - некомпенсируемая постоянная времени (примем Tμ = 0,0025 с).

Обозначим:

Математические модели ПИ-регуляторов тока по проекциям x и y под номерами 4 и 6 приведены на рис. 12 и 13.

F:\ALL\С12\2018\3. Март\2.3\myfig.meta

Рис. 12. ПИ-регулятор тока по проекции x

F:\ALL\С12\2018\3. Март\2.3\myfig.meta

Рис. 13. ПИ-регулятор тока по проекции y

Важной частью структуры является наблюдатель, который служит для вычисления амплитуды и углового положения вектора потокосцепления ротора. Поскольку в системе x, y поток ротора ориентирован по оси x, определим модуль |ψrx|, исключив из уравнения (13) составляющую потока ψry:

(20)

Произведем оценку угла потока ротора, для чего сначала выразим частоту скольжения из уравнения (16) при ψry = 0:

Интегрируя скольжение и складывая его с вычисленным, как интеграл скорости, углом ротора, можно получить угол потока ротора в неподвижной системе координат [6].

Математическая модель наблюдателя потокосцепления ротора (номер 8) приведена на рис. 14.

F:\ALL\С12\2018\3. Март\2.3\myfig.meta

Рис. 14. Модель наблюдателя потокосцепления ротора

Выполним синтез регулятора потока. Из (20) передаточная функция объекта управления в контуре потока будет иметь следующий вид:

Передаточная функция регулятора потока:

Примем , где n = 1; 2; 10; 20. Тогда передаточная функция регулятора потока определится следующим образом:

Выразим коэффициенты ПИ-регулятора потока:

Модель ПИ-регулятора потока под номером 2 представлена на рис. 15.

C:\Program Files\MATLAB\R2015b\bin\myfig.meta

Рис. 15. ПИ-регулятор потока

В контуре скорости передаточная функция объекта имеет следующий вид:

Синтез регулятора скорости:

где

Математическая модель П-регулятора скорости (номер 1) приведена на рис. 16.

F:\ALL\С12\2018\3. Март\2.3\myfig.meta

Рис. 16. Пропорциональный регулятор скорости

В системе управления предусмотрена компенсация внутренних перекрестных связей. Из уравнений (14) и (18) выразим компенсационные составляющие каналов управления:

Математическая модель компенсации перекрестных связей (номер 5) представлена на рис. 17.

E:\MATLAB\R2016a\bin\myfig.meta

Рис. 17. Компенсация внутренних перекрестных связей

Задание на скорость ω* формируется в блоке Signal Builder (рис. 18).

Рис. 18. Сигнал задания на скорость ω*

Номинальное потокосцепление ротора в соответствии с [3] определяется по следующей формуле и при векторном управлении поддерживается постоянным:

Задание на статорный ток по проекции y:

Отсюда

Математическая модель определения задания (номер 3) дана на рис. 19.

F:\ALL\С12\2018\3. Март\2.3\myfig.meta

Рис. 19. Реализация задания статорного тока по проекции y

Расчет параметров производим в Script:

PN=320000;

UsN=380;

IsN=324;

fN=50;

Omega0N=104.7;

OmegaN=102.83;

nN=0.944;

cos_phiN=0.92;

zp=3;

Rs=0.0178;

Xs=0.118;

Rr=0.0194;

Xr=0.123;

Xm=4.552;

J=28;

Ub=sqrt(2)*UsN;

Ib=sqrt(2)*IsN;

OmegasN=2*pi*fN;

Omegab=OmegasN;

Omegarb=Omegab/zp;

Zb=Ub/Ib;

kd=1.0084;

Mb=kd*PN/OmegaN;

Pb=Mb*Omegarb;

rs=Rs/Zb;

lbs=Xs/Zb;

lbr=Xr/Zb;

lm=Xm/Zb;

Tj=J*Omegarb/Mb;

betaN=(Omega0N-OmegaN)/Omega0N;

SsN=3*UsN*IsN;

ZetaN=SsN/Pb;

kr=lm/(lm+lbr);

lbe=lbs+lbr+lbs*lbr*lm^(-1);

roN=0.9962;

rrk=roN*betaN;

Tr=lm/(rrk*kr);

re=rs+rrk*kr^2;

Te=kr*lbe/re;

Tm=0.0025;

Tm1=0.0075;

psi_rN=0.942;

Числовые значения параметров выводятся в окне Workspace (рис. 20).

Рис. 20. Числовые значения параметров в окне Workspace

Зависимости потокосцеплений ψrx(t) и ψry(t) при различных постоянных Tψ приведены на рис. 21.

Рис. 21. Графики потокосцеплений ψrx и ψry при , где n = 1; 2; 10; 20

Зависимости ω, m, isy в различные моменты включения задатчика интенсивности tинт = 0,1; 0,8 с даны на рис. 22. Характеристика потокосцепления ψrx соответствует постоянной .

Рис. 22. Зависимости ω, m, isy в различные моменты включения задатчика интенсивности tинт = 0,1; 0,8 с при

Литература:

  1. Емельянов А.А., Бесклеткин В.В., Авдеев А.С., Чернов М.В., Киряков Г.А., Габзалилов Э.Ф. Моделирование САР скорости асинхронного двигателя с переменными ψr - is на основе апериодических звеньев в Script-Simulink // Молодой ученый. - 2015. - №23. - С. 24-34.
  2. Шрейнер Р.Т. Системы подчиненного регулирования электроприводов: учеб. пособие / Р.Т. Шрейнер. - Екатеринбург: Изд-во ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. – 279 с.
  3. Шрейнер Р.Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р.Т. Шрейнер, А.В. Костылев, В.К. Кривовяз, С.И. Шилин. Под ред. проф. д.т.н. Р.Т. Шрейнера. - Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. - 361 с.
  4. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. – Екатеринбург: УРО РАН, 2000. - 654 с.
  5. Шрейнер Р.Т. Электроприводы переменного тока на базе непосредственных преобразователей частоты с ШИМ: монография / Р.Т. Шрейнер, А.И. Калыгин, В.К. Кривовяз; под. ред. Р.Т. Шрейнера. - Екатеринбург: ФГАОУ ВПО «Рос. гос. проф.-пед. ун-т», 2012. – 223 с.
  6. Калачёв Ю.Н. Наблюдатели состояния в векторном электроприводе. - М.: Самиздат, 2015. - 80 с.
Основные термины (генерируются автоматически): асинхронный двигатель, структурная схема, уравнение, математическая модель, левая часть, полученное уравнение, проекция, механическая угловая скорость, электрическая скорость вращения ротора, электромагнитный момент.


Похожие статьи

Моделирование САР скорости асинхронного двигателя с переменными ψm – is с контуром потока в системе относительных единиц

Моделирование САР скорости асинхронного двигателя с переменными Ψm - IS с контуром потока в системе абсолютных единиц

Моделирование САР скорости асинхронного двигателя с переменными ΨR - IS с контуром потока в системе абсолютных единиц

Моделирование САР скорости асинхронного двигателя с переменными is – ψr в системе относительных единиц в Matlab и Си

Моделирование САР скорости асинхронного двигателя с переменными is – ψr в Matlab-Script в системе относительных единиц

Моделирование САР скорости асинхронного двигателя с переменными ψm – is в Matlab-Script в системе относительных единиц

Математическое моделирование САР скорости асинхронного двигателя с переменными ΨR – IS в системе абсолютных единиц

Моделирование асинхронного двигателя с переменными is – ψm в системе относительных единиц в Matlab и Си

Моделирование асинхронного двигателя с переменными is — ψr в системе относительных единиц в Matlab и Си

Моделирование САР скорости асинхронного двигателя с переменными ΨR - IS в системе абсолютных единиц в Matlab-Script

Похожие статьи

Моделирование САР скорости асинхронного двигателя с переменными ψm – is с контуром потока в системе относительных единиц

Моделирование САР скорости асинхронного двигателя с переменными Ψm - IS с контуром потока в системе абсолютных единиц

Моделирование САР скорости асинхронного двигателя с переменными ΨR - IS с контуром потока в системе абсолютных единиц

Моделирование САР скорости асинхронного двигателя с переменными is – ψr в системе относительных единиц в Matlab и Си

Моделирование САР скорости асинхронного двигателя с переменными is – ψr в Matlab-Script в системе относительных единиц

Моделирование САР скорости асинхронного двигателя с переменными ψm – is в Matlab-Script в системе относительных единиц

Математическое моделирование САР скорости асинхронного двигателя с переменными ΨR – IS в системе абсолютных единиц

Моделирование асинхронного двигателя с переменными is – ψm в системе относительных единиц в Matlab и Си

Моделирование асинхронного двигателя с переменными is — ψr в системе относительных единиц в Matlab и Си

Моделирование САР скорости асинхронного двигателя с переменными ΨR - IS в системе абсолютных единиц в Matlab-Script

Задать вопрос