Моделирование асинхронного двигателя с переменными IR – Ψm на выходе апериодических звеньев в системе абсолютных единиц в Simulink-Script | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 8 июня, печатный экземпляр отправим 12 июня.

Опубликовать статью в журнале

Библиографическое описание:

Емельянов А. А., Бесклеткин В. В., Пестеров Д. И., Вотяков А. С., Коровин В. О., Соснин А. С., Быстрых Д. А. Моделирование асинхронного двигателя с переменными IR – Ψm на выходе апериодических звеньев в системе абсолютных единиц в Simulink-Script // Молодой ученый. — 2017. — №49. — С. 10-20. — URL https://moluch.ru/archive/183/46990/ (дата обращения: 25.05.2019).



Моделирование асинхронного двигателя с переменными IR – Ψm на выходе апериодических звеньев в системе абсолютных единиц в Simulink-Script

Емельянов Александр Александрович, доцент;

Бесклеткин Виктор Викторович, ассистент;

Пестеров Дмитрий Ильич, студент;

Вотяков Александр Сергеевич, студент;

Коровин Вадим Олегович, студент;

Соснин Александр Сергеевич, студент

Российский государственный профессионально-педагогический университет (г. Екатеринбург)

Быстрых Денис Анатольевич, начальник конструкторско-технологического бюро

АО «Уральский турбинный завод» (г. Екатеринбург)

В работе [1] дано математическое моделирование асинхронного двигателя с переменными irψm в системе относительных единиц. В данной работе приведена модель асинхронного двигателя с этими же переменными в системе абсолютных единиц.

Векторные уравнения асинхронного двигателя имеют следующий вид:

Переводим систему уравнений к изображениям :

(1)

(2)

(3)

(4)

(5)

(6)

Схема замещения и векторная диаграмма в системе абсолютных единиц [3] приведены на рис. 1 и 2.

Рис. 1. Схема замещения асинхронного двигателя в системе абсолютных единиц

Рис. 2. Качественная картина расположения векторов в двигательном режиме в системе абсолютных единиц

Так как электромагнитный момент определяется через переменные Ψm и IR, то из уравнений (1), …, (4) необходимо исключить ΨS и IS.

В работе [2] приведены следующие выражения векторных величин:

(7)

(8)

Из уравнения (8) выразим :

(9)

Подставим ток из уравнения (9) в уравнение (3):

Обозначим , тогда:

(10)

Расписываем векторы через проекции:

Записываем уравнения (1), …, (10) по проекциям.

По оси (+1):

(1’)

По оси (+j):

(1”)

Уравнение (2):

По оси (+1):

(2’)

По оси (+j):

(2”)

Уравнение (7):

По оси (+1):

(7’)

По оси (+j):

(7”)

Уравнение (9):

По оси (+1):

(9’)

По оси (+j):

(9”)

Уравнение (10):

По оси (+1):

(10’)

По оси (+j):

(10”)

Полученные зависимости рассмотрим в единой системе по проекции (+1):

Подставим (9’), (10’) и (10”) в уравнение (1’):

(11)

Аналогично, подставим (7’) и (7”) в (2’):

(12)

Умножим уравнение (12) на :

Вычтем полученное уравнение из уравнения (11):

(13)

Введем обозначения:

В уравнении (13) перенесем слагаемые с IRx в левую часть:

Обозначим

Тогда ток IRx определится в следующей форме:

Структурная схема для определения тока IRx приведена на рис. 3.

Рис. 3. Структурная схема для определения тока IRx

Для определения потокосцепления Ψmx умножим уравнение (11) на LσR, а уравнение (12) на LσS:

Сложим оба уравнения и получим:

(14)

Перенесем в левую часть слагаемые с Ψmx:

Обозначим:

Отсюда потокосцепление Ψmx определится в следующей форме:

Структурная схема для определения потокосцепления Ψmx приведена на рис. 4.

Рис. 4. Структурная схема для определения потокосцепления Ψmx

Рассмотрим систему уравнений (1”), …, (10”) по проекции (+j):

Подставим (9”), (10”) и (10’) в уравнение (1”):

(15)

Аналогично, подставим (7”) и (7’) в уравнение (2”):

(16)

Умножим уравнение (16) на :

Вычтем полученное уравнение из уравнения (15):

(17)

Перенесем в левую часть слагаемые с IRy:

Определим ток IRy:

Структурная схема для определения тока IRy представлена на рис. 5.

Рис. 5. Структурная схема для определения тока IRy

Для определения потокосцепления Ψmy умножим уравнение (15) на LσR, а (16) на LσS:

Сложим оба уравнения и получим:

(18)

Перенесем в левую часть слагаемые с Ψmy:

Выразим потокосцепление Ψmy:

Структурная схема для определения потокосцепления Ψmy представлена на рис. 6.

Рис. 6. Структурная схема для определения потокосцепления Ψmy

На рис. 7 представлена структурная схема для реализации уравнения электромагнитного момента (5):

Рис. 7. Математическая модель определения электромагнитного момента M

Наконец, из уравнения движения (6) выразим механическую угловую скорость вращения вала двигателя (рис. 8):

Рис. 8. Математическая модель уравнения движения

Математическая модель асинхронного двигателя с короткозамкнутым ротором с переменными IRΨm на выходе апериодических звеньев в системе абсолютных единиц приведена на рис. 9. Параметры асинхронного двигателя рассмотрены в работах [2] и [3].

H:\ALL\С12\2017\12. Декабрь\2.1\myfig.meta

Рис. 9. Математическая модель асинхронного двигателя с переменными IRΨm на выходе апериодических звеньев в системе абсолютных единиц

Расчет параметров производим в Script:

PN=320000;

UsN=380;

IsN=324;

fN=50;

Omega0N=104.7;

OmegaN=102.83;

nN=0.944;

cos_phiN=0.92;

zp=3;

Rs=0.0178;

Xs=0.118;

Rr=0.0194;

Xr=0.123;

Xm=4.552;

J=28;

Ub=sqrt(2)*UsN;

Ib=sqrt(2)*IsN;

OmegasN=2*pi*fN;

Omegab=OmegasN;

Zb=Ub/Ib;

Psib=Ub/Omegab;

Lb=Psib/Ib;

rs=Rs/Zb;

lbs=Xs/Zb;

rr=Rr/Zb;

lbr=Xr/Zb;

lm=Xm/Zb;

Lm=lm*Lb;

ks=lm/(lm+lbs);

kr=lm/(lm+lbr);

betaN=(Omega0N-OmegaN)/Omega0N;

lbe=lbs+lbr+lbs*lbr*lm^(-1);

Lbe=lbe*Lb;

roN=0.9962;

rrk=roN*betaN;

RRk=rrk*Zb;

RR6=Rs+RRk/ks;

TR6=Lbe/RR6;

LbS=lbs*Lb;

LbR=lbr*Lb;

RR7=LbS*RRk-LbR*Rs;

RS9=LbR*Rs/Lm;

TM2=Lbe/RS9;

Числовые значения параметров выводятся в окне Workspace (рис. 10).

Рис. 10. Числовые значения параметров в окне Workspace

Результаты моделирования асинхронного двигателя представлены на рис. 11.

Рис. 11. Графики скорости и момента

Литература:

  1. Емельянов А.А., Бесклеткин В.В., Соснин А.С., Воротилкин Е.А., Попов С.Ю., Камолов И.И., Волков Е.Н. Математическая модель асинхронного двигателя с переменными ψm – ir на выходе апериодических звеньев в Simulink-Script // Молодой ученый. - 2017. - №14. - С. 12-22.
  2. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. – Екатеринбург: УРО РАН, 2000. - 654 с.
  3. Шрейнер Р.Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р.Т. Шрейнер, А.В. Костылев, В.К. Кривовяз, С.И. Шилин. Под ред. проф. д.т.н. Р.Т. Шрейнера. - Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. - 361 с.
Основные термины (генерируются автоматически): асинхронный двигатель, структурная схема, уравнение, левая часть, математическая модель, электромагнитный момент, единица, ось, система, числовое значение параметров.


Похожие статьи

Математическое моделирование асинхронного двигателя...

структурная схема, уравнение, электромагнитный момент, неподвижная система координат, асинхронный двигатель, Проекция уравнения, статорный ток, номинальный режим, математическая модель...

Математическая модель асинхронного двигателя во...

электромагнитный момент, уравнение, структурная схема, номинальный режим, результат моделирования, вал двигателя, прямой пуск, номинальная частота, асинхронный двигатель.

Математическая модель асинхронного двигателя...

асинхронный двигатель, математическая модель, структурная схема, уравнение, проекция уравнения, номинальная частота, электромагнитный момент, номинальный режим, Базисная величина системы, статорный ток.

Математическая модель асинхронного двигателя...

уравнение, система координат, структурная схема, роторная система координат, вектор, неподвижная система координат, асинхронный двигатель, электромагнитный момент, неподвижная система координат статора, система...

Математическая модель асинхронного двигателя...

асинхронный двигатель, структурная схема, уравнение, левая часть, математическая модель, часть уравнения, электромагнитный момент, система уравнений, переменная, ось.

Моделирование асинхронного двигателя с переменными IS...

структурная схема, асинхронный двигатель, уравнение, апериодическое звено, левая часть, электромагнитный момент, математическая модель, ось, переменная, система уравнений.

Моделирование асинхронного двигателя с переменными IS...

асинхронный двигатель, структурная схема, уравнение, система уравнений, ось, переменная, электромагнитный момент, математическая модель, левая часть, статорный ток.

Моделирование САР скорости асинхронного двигателя...

‒ приводится его структурная схема; ‒ переход от изображений к оригиналу (от s к d/dt) и решение с помощью простого метода Эйлера. Математическая модель асинхронного двигателя с переменными is – ψr.

Математическая модель асинхронного двигателя...

уравнение, система координат, асинхронный двигатель, математическая модель, Структурная схема, вращающийся вектор, Проекция уравнения, блок ориентации, преобразователь координат...

Похожие статьи

Математическое моделирование асинхронного двигателя...

структурная схема, уравнение, электромагнитный момент, неподвижная система координат, асинхронный двигатель, Проекция уравнения, статорный ток, номинальный режим, математическая модель...

Математическая модель асинхронного двигателя во...

электромагнитный момент, уравнение, структурная схема, номинальный режим, результат моделирования, вал двигателя, прямой пуск, номинальная частота, асинхронный двигатель.

Математическая модель асинхронного двигателя...

асинхронный двигатель, математическая модель, структурная схема, уравнение, проекция уравнения, номинальная частота, электромагнитный момент, номинальный режим, Базисная величина системы, статорный ток.

Математическая модель асинхронного двигателя...

уравнение, система координат, структурная схема, роторная система координат, вектор, неподвижная система координат, асинхронный двигатель, электромагнитный момент, неподвижная система координат статора, система...

Математическая модель асинхронного двигателя...

асинхронный двигатель, структурная схема, уравнение, левая часть, математическая модель, часть уравнения, электромагнитный момент, система уравнений, переменная, ось.

Моделирование асинхронного двигателя с переменными IS...

структурная схема, асинхронный двигатель, уравнение, апериодическое звено, левая часть, электромагнитный момент, математическая модель, ось, переменная, система уравнений.

Моделирование асинхронного двигателя с переменными IS...

асинхронный двигатель, структурная схема, уравнение, система уравнений, ось, переменная, электромагнитный момент, математическая модель, левая часть, статорный ток.

Моделирование САР скорости асинхронного двигателя...

‒ приводится его структурная схема; ‒ переход от изображений к оригиналу (от s к d/dt) и решение с помощью простого метода Эйлера. Математическая модель асинхронного двигателя с переменными is – ψr.

Математическая модель асинхронного двигателя...

уравнение, система координат, асинхронный двигатель, математическая модель, Структурная схема, вращающийся вектор, Проекция уравнения, блок ориентации, преобразователь координат...

Задать вопрос