В ходе работы была рассмотрена контактная задача кручения полого линейно-упругого цилиндра в цилиндрических координатах. Рассмотрим цилиндр, внутренний радиус которого равен R, а внешний R1. Внешняя поверхность цилиндра жестко закреплена. Внутрь цилиндра помещен жесткий цилиндрический вкладыш длины 2a, к которому приложен крутящий момент M. Под действием этого момента упругий материал цилиндра в области контакта испытывает угловое перемещение u. Материал цилиндра характеризуется модулем сдвига G. При заданных величинах R, R1, a, требуется определить контактное напряжение p(z) в области контакта. Затем может быть определен момент M. При помощи интегрального преобразования Фурье задача сводится к следующему интегральному уравнению () [3]:
(1)
где символ ядра имеет вид
(2)
Здесь In(u), Kn(u) ― модифицированные функции Бесселя [10]. Безразмерный параметр характеризует толщину стенок цилиндра. При ∞ функция L(u) вида (2) стремится к функции
(3)
соответствующей случаю кручения пространства с цилиндрической шахтой.
Ранее было установлено, что при и u функция вида (3) достаточно хорошо аппроксимирует функцию L(u) и было получено полное решение уравнения (1) с символом ядра (3) [3]. Отметим, что наибольшее отличие этих функций наблюдается в нуле, где
(4)
В бесконечности функция (2) имеет асимптотику:
Асимптотическое решение. Введем безразмерные обозначения
(6)
Штрихи далее будем опускать. Параметр характеризует относительную ширину области контакта. В обозначениях (6) уравнение (1) примет вид
(7)
Для решения уравнения (7) применим сингулярный асимптотический метод [5,6], эффективный при достаточно малых значениях . Метод основан на сведении уравнения (7) к интегральному уравнению ВинераХопфа, при решении которого используем аппроксимацию
(8)
при условиях
(9)
Аппроксимация (8), (9) учитывает поведение L(u) в нуле и бесконечности, см. формулы (4), (5). Кроме того, функция (8) легко факторизуема.
Для нахождения коэффициентов аппроксимации минимизируется невязка аппроксимации содержащая подгоночные коэффициенты , заданная на множестве функции . Невязка определяется в соответствии с формулой .
Таким образом, необходимо найти значения коэффициентов , при которых будет наименьшей.
Практически всегда оптимизируемая функция обладает каким-либо свойством: алгоритмическое задание, сложная конфигурация допустимой области, наличие нескольких типов переменных. Это приводит к необходимости применения специализированных методов, к которым и относятся генетические алгоритмы, хорошо зарекомендовавшие себя в ситуациях, когда применение стандартных методов оптимизации крайне затруднено.
Литература:
- Л. Галин. Развитие теории контактных задач в СССР. —:, 1976. — 496 с.
- Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы. —: Физматлит, 2006. — 2006. с.