Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 21 июня, печатный экземпляр отправим 25 июня.

Опубликовать статью в журнале

Автор:

Рубрика: Математика

Опубликовано в Молодой учёный №11 (115) июнь-1 2016 г.

Дата публикации: 25.05.2016

Статья просмотрена: 184 раза

Библиографическое описание:

Мамытов, А. О. Об одной задаче определения правой части линейного дифференциального уравнения четвертого порядка / А. О. Мамытов. — Текст : непосредственный // Молодой ученый. — 2016. — № 11 (115). — С. 49-53. — URL: https://moluch.ru/archive/115/30705/ (дата обращения: 07.06.2025).



В работе исследована обратная задача определения правой части для дифференциального уравнения с частными производными четвертого порядка с переопределениям во внутренних точках. Сначала с помощью функции Грина исходная прямая задача сводится к эквивалентной задаче, для которой доказывается теорема существования и единственности решения. Далее, пользуясь методами обратных теории задач, доказывается существование и единственность решения рассматриваемой обратной задачи.

Ключевые слова: обратная задача, дифференциального уравнения с частными производными, функция Грина.

К настоящему времени обратные задачи превратились в бурно развивающуюся область знаний, проникающую почти во все сферы математики, включая алгебру, анализ, дифференциальные уравнения, математическую физику и др. С другой стороны, теория обратных задач широко применяется для решения практических задач почти во всех областях науки, в частности, в физике, медицине, экологии, экономике.

На данный момент в связи с проблемами геофизики, океанологии, физики атмосферы, использованием криогенных жидкостей в технике и ряда других проблем значительно возрос интерес к изучению динамики неоднородных, и в частности, стратифицированных жидкостей, которые приводят к начально-краевым задачам для уравнений с частными производными четвертого порядка.

В работе рассматривается обратная задача для дифференциальных уравнений с частными производными четвертого порядка.

Постановка задачи. Требуется найти функции f(t) иu(t,x) в области

T={(x, t)|0<x<1,},удовлетворяющие уравнению

,(1)

заданным начальным и краевым условиям,

,,,(2)

(3)

и известно решениеu(t,x) в точке

,(4)

где 0<T — заданная постоянная,αиβ- известные постоянные.

Предположим выполнение следующих условий:

(5)

Лемма 1. Еслито резольвентаR(t,s)ядра, представима в виде

.(6)

Доказательство.Для докакзательства покажем, что

.

В самом деле,

Лемма 1 доказана.

Лемма 2. Если α>0, то функция Грина краевой задачи

записывается в виде

(7)

Доказательство.Функцию Грина G(x,) будем искать в виде

(8)

где a1,a2,b1,b2 — пока неизвестные функции.Из определения функции Грина G(x,) имеем:

,

,

,

.

Продифференцируем (8) по х:

Тогда

Отсюда находим

(9)

(10)

Подставляя (9) и (10) в (8), получим (7). Лемма 2 доказана.

Для решения обратной задачи (1)-(4) введем обозначение

(11)

Тогда имеют место равенства

(12)

Учитывая (11) и (12), из (1) имеем

. (13)

Применяя резольвенту (5) ядра , из (12) получим

(14)

Учитывая (3), из (11) имеем

(15)

Используя функцию ГринаG(x,) определенную по формуле (7)к краевой задаче (14)-(15), получим

(16)

Введя обозначение для известных функций

(17)

уравнение (16) перепишем в виде

(18)

Полагая иучитывая (4), (11), из (18) имеем

(19)

Пусть

где(20)

Таким образом, для определенияи v(t,x),,мыполучили систему линейных интегральных уравнений Вольтерра второго рода (18) и (19).Тем самым доказана следующая

Теорема. Пусть выполняются условия (5) и (20). Тогда обратная задача (1)-(4) имеет единственное решение {v(t,x),f(t),}из пространствагде пространство n- мерных вектор- функций с элементами из

Литература:

  1. Asanov A., Atamanov E. R. Nonclassical and Inverse Problems for Pseudoparabolic Equations. — Netherlands: VSP, Utrecht, 1997. — 152 p.
  2. Асанов А., Атаманов Э. Р. Обратная задача для операторного интегро-дифференциального псевдопараболического уравнения.- Сиб. матем. журнал.- 1995. Т.36. № 4.- С.752–762.
  3. Бухгейм А. Л. Уравнения Вольтерра и обратные задачи. — Новосибирск: Наука, 1983. — 207 с.
  4. Кабанихин С. И. Обратные и некорректные задачи. — Новосибирск: Сибирское научное издательство, 2009. — 457 с.
  5. Лаврентьев М. М. О некорректных задачах математической физики.- Новосибирск: СО АН СССР, 1962.
  6. Матанова К. Б. Обратная задача для дифференциальных уравнений с частными производными четвертого порядка // Вестник ОшГУ. Труды международной научно-теоретической конференции “Проблемы образования, науки и культуры в начале 21 века”. 2001. Вып. 4. — С. 94–100.
Основные термины (генерируются автоматически): обратная задача, дифференциальное уравнение, единственность решения.


Ключевые слова

функция Грина, обратная задача, дифференциального уравнения с частными производными

Похожие статьи

Об одной обратной задаче определения источника для уравнения теплопроводности с дробными по времени производными

В данной работе изучается нелинейная обратная задача для линейного уравнения теплопроводности с дробными производными по времени с условиями переопределения во внутренней точке. Сначала изучается прямая задача. С помощью метода Фурье эта прямая задач...

Об одной задаче идентификации функции источника двумерного псевдопараболического уравнения третьего порядка

В данной статье изучается задача идентификации источника специального вида в двумерном псевдопараболическом уравнении в случае задачи Коши. В классе достаточно гладких ограниченных функций доказывается теоремы существование и единственности решения. ...

Обратная задача определения зависящего от времени коэффициента уравнения теплопроводности с дробными по времени производными

В данной работе исследуется нелинейная обратная задача определения коэффициента для линейного уравнения теплопроводности с дробными по времени производными с условием переопределения во внутренней точке. Методом Фурье эта обратная задача сводится к э...

Задачи Дарбу и Коши для линейных гиперболических уравнений с постоянными коэффициентами

Многие явления механики, физики, биологии сводятся к исследованию гиперболических уравнений. Чтобы эти явления описать полностью для гиперболических уравнений, ставится задача Дарбу и для дальнейших изучений необходимо явное представление рассматрива...

О разрешимости второй начально-краевой задачи для одномерного псевдопараболического уравнения с дробными производными

В одномерной ограниченной области исследована вторая начально-краевая задача для однородного псевдопараболического уравнения с дробной по времени производной Капуто. Установлены условия однозначной разрешимости рассматриваемой задачи в классе непреры...

Псевдопараболическая регуляризация одной граничной обратной задачи для уравнения теплопроводности

Работа посвящена исследованию одной граничной обратной задаче для уравнения теплопроводности, которое связана с изучением нестационарных тепловых процессов. Обратная задача заключается в нахождении граничной функции из первой начально-краевой задачи ...

Асимптотика решения бисингулярной задачи на бесконечной прямой с квадратичной особенностью по времени

В работе построено асимптотическое разложение решения задачи Коши для бисингулярной параболического уравнения, в случае, когда решение соответствующего «вырожденного» уравнения имеет полюс второго порядка по времени в начальной точке. Асимптотика реш...

Решение начальной задачи для линейных рекуррентных соотношений первого порядка в случае одношагового расщепления

Рассматривается начальная задача для неоднородного линейного рекуррентного соотношения первого порядка с операторными коэффициентами A,B, задаваемыми квадратными числовыми матрицами. Оператор A необратим, вследствие чего задача имеет решение не при к...

Решение одного интегрального уравнения Фредгольма первого рода

Рассматривается интегральное уравнение Фредгольма первого рода. Такие уравнения встречаются в задачах математической физики (например, в оптических явлениях), в задачах об издержках производства и т. д. Рассматривается частный случай разложимого ядра...

К задаче об оптимальной стабилизации управляемых систем с конечным запаздыванием

В работе предложено решать задачу об оптимальной стабилизации для функционально-дифференциального уравнения на основе функционалов Ляпунова со знакопостоянной производной. Для этого используется метод предельных уравнений.

Похожие статьи

Об одной обратной задаче определения источника для уравнения теплопроводности с дробными по времени производными

В данной работе изучается нелинейная обратная задача для линейного уравнения теплопроводности с дробными производными по времени с условиями переопределения во внутренней точке. Сначала изучается прямая задача. С помощью метода Фурье эта прямая задач...

Об одной задаче идентификации функции источника двумерного псевдопараболического уравнения третьего порядка

В данной статье изучается задача идентификации источника специального вида в двумерном псевдопараболическом уравнении в случае задачи Коши. В классе достаточно гладких ограниченных функций доказывается теоремы существование и единственности решения. ...

Обратная задача определения зависящего от времени коэффициента уравнения теплопроводности с дробными по времени производными

В данной работе исследуется нелинейная обратная задача определения коэффициента для линейного уравнения теплопроводности с дробными по времени производными с условием переопределения во внутренней точке. Методом Фурье эта обратная задача сводится к э...

Задачи Дарбу и Коши для линейных гиперболических уравнений с постоянными коэффициентами

Многие явления механики, физики, биологии сводятся к исследованию гиперболических уравнений. Чтобы эти явления описать полностью для гиперболических уравнений, ставится задача Дарбу и для дальнейших изучений необходимо явное представление рассматрива...

О разрешимости второй начально-краевой задачи для одномерного псевдопараболического уравнения с дробными производными

В одномерной ограниченной области исследована вторая начально-краевая задача для однородного псевдопараболического уравнения с дробной по времени производной Капуто. Установлены условия однозначной разрешимости рассматриваемой задачи в классе непреры...

Псевдопараболическая регуляризация одной граничной обратной задачи для уравнения теплопроводности

Работа посвящена исследованию одной граничной обратной задаче для уравнения теплопроводности, которое связана с изучением нестационарных тепловых процессов. Обратная задача заключается в нахождении граничной функции из первой начально-краевой задачи ...

Асимптотика решения бисингулярной задачи на бесконечной прямой с квадратичной особенностью по времени

В работе построено асимптотическое разложение решения задачи Коши для бисингулярной параболического уравнения, в случае, когда решение соответствующего «вырожденного» уравнения имеет полюс второго порядка по времени в начальной точке. Асимптотика реш...

Решение начальной задачи для линейных рекуррентных соотношений первого порядка в случае одношагового расщепления

Рассматривается начальная задача для неоднородного линейного рекуррентного соотношения первого порядка с операторными коэффициентами A,B, задаваемыми квадратными числовыми матрицами. Оператор A необратим, вследствие чего задача имеет решение не при к...

Решение одного интегрального уравнения Фредгольма первого рода

Рассматривается интегральное уравнение Фредгольма первого рода. Такие уравнения встречаются в задачах математической физики (например, в оптических явлениях), в задачах об издержках производства и т. д. Рассматривается частный случай разложимого ядра...

К задаче об оптимальной стабилизации управляемых систем с конечным запаздыванием

В работе предложено решать задачу об оптимальной стабилизации для функционально-дифференциального уравнения на основе функционалов Ляпунова со знакопостоянной производной. Для этого используется метод предельных уравнений.

Задать вопрос