Определение критических давлений магистральных газонефтепроводов при частичном несплавлении продольного сварного шва стальных толстостенных труб | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 30 ноября, печатный экземпляр отправим 4 декабря.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №15 (95) август-1 2015 г.

Дата публикации: 24.07.2015

Статья просмотрена: 232 раза

Библиографическое описание:

Шинкин, В. Н. Определение критических давлений магистральных газонефтепроводов при частичном несплавлении продольного сварного шва стальных толстостенных труб / В. Н. Шинкин. — Текст : непосредственный // Молодой ученый. — 2015. — № 15 (95). — С. 222-229. — URL: https://moluch.ru/archive/95/21317/ (дата обращения: 16.11.2024).

Предложен математический критерий определения критического внутритрубного давления, при котором происходит упругопластическое разрушение стенки трубы при частичном несплавлении сварного шва. Результаты исследования могут быть использованы при диагностике причин разрушения стальных труб большого диаметра магистральных газонефтепроводов.

Ключевые слова: стальные сварные трубы большого диаметра, критическое давление разрыва трубы, модель нелинейной упругопластической сплошной среды.

 

Основные причины аварий магистральных трубопроводов. Среднее число инцидентов и аварий, приходящихся на 1000 км, составило в России за 1999−2009 гг. 0,06 отказов в год. На западноевропейских магистральных трубопроводах среднее число отказов за 1991−2006 гг. составило 0,32 отказа в год, на североамериканских − до 0,48. В США в 1,5 раза больше отказов из-за внешних воздействий. В Европе три наиболее важные причины возникновения аварий − внешние воздействия на трубопроводы (36 %), коррозия (29 %) и механические повреждения (24 %).

Механические дефекты производства труб из стального листа. В практике производства труб большого диаметра для магистральных газонефтепроводов утвердился процесс формовки трубной заготовки из толстого стального листа по схеме JСOE [1-41]. Перед формовкой труб стальной лист правят на многороликовых листоправильных машинах [5-11]. Дефект образования гофра продольной кромки стального листа на кромкогибочном прессе изучался в работах [1, 2, 12-24], вредное влияние остаточных напряжений в стенке стального листа после трубоформовочного пресса на процесс экспандирования трубы − в [1, 2, 25], дефект «точка перегиба» при изгибе стального листа на трубоформовочном прессе − в [1, 2, 27], дефект несплавления сварного продольного шва при сборке трубы − в [1, 2], дефект стального листа раскатной пригар с риской - в [1, 2, 36], процессы прокатки стального листа для производства труб - в [42-52].

Прочностной анализ разрушения труб при частичном несплавлении сварного шва. Схема дефекта частичного несплавления продольного сварного шва трубы показана на рис. 1, где 1 − стенка трубы, 2 − внешний сварной шов, 3 − фаска кромки трубы до сварки, 4 − внутренний сварной шов, 5 − дефект несплавления металла сварного шва с основным металлом трубы, 6 − дефект наплыва сварного шва на внутреннею поверхность трубы.

Пусть D, h и Δ − внешний диаметр трубы, толщина стенки трубы (h << D) и глубина несплавления сварного соединения на внутренней поверхности трубы (Δ < h); φ и s − угол и длина нижней фаски трубы.

Рис. 1. Схема дефекта частичного несплавления сварного шва трубы

 

Под действием внутреннего давления при гидроиспытаниях металл трубы в зоне несплавления заводского сварного шва испытывает сложное сопротивление: окружное растяжение, радиальное сжатие, изгиб относительно продольной линии сварного шва, а также концентрацию напряжений. По теории упругопластического течения и критерию прочности Треска-Сен-Венана внутренняя стенка труб начинает разрушаться в точке А (корне внутреннего сварного шва), когда максимальные касательные напряжения в точке А достигают половины предела прочности σв. Разрушение сварного шва происходит при достижении в трубе критического давления (критерий разрыва трубы при несплавлении сварного шва Шинкина)

где μ = const ≥ 1 − безразмерный коэффициент, учитывающий концентрацию напряжений в зоне несплавления сварного шва.

Пример разрушения трубы. На рис. 2 показан вид сбоку разрыва стальной толстостенной трубы магистрального нефтепровода «Восточная Сибирь - Тихий Океан» 10 июня 2009 г. в районе г. Алдана: 1 − место начала разрыва трубы, 2 − продольный сварной шов, 3 − кольцевой (монтажный) сварной шов, 4 − наружная изоляция трубы.

Разрушение прямошовной двухшовной трубы (ОАО «Харцызский трубный завод») класса прочности К60, диаметра 1220 мм и с толщиной стенки 19 мм произошло при гидравлических испытаниях на трассе при достижении величины испытательного давления 109,8 кгс/см2. У разорванной трубы был обнаружен заводской дефект несплавления продольного сварного шва глубиной 4−5 мм.

Рис. 2. Вид сбоку разрыва трубы при гидроиспытаниях на трассе

 

На рис. 3 показаны дефекты сварного соединения в области разрыва трубы: 1 − дефект несплавления основного металла трубы и внутреннего продольного сварного шва, 2 − глубина зоны несплавления, 3 − дефект наплыва металла внутреннего сварного шва на поверхность трубы, 4 − наружная изоляция трубы.

Прочностной анализ критических давлений разрушенной трубы. Для разорванной трубы D = 1220 мм, h = 19 мм, Δ = 4−5 мм, σв(трубы) ≤ 527 Н/мм2, σв(шва) ≤ 673 Н/мм2. Применяя критерий разрыва трубы при несплавлении сварного шва, получаем, что при глубине несплавления продольного сварного шва Δ = 3,2 мм и μ = 1 для основного металла трубы pshкритич = 82,993 кгс/см2, а для металла сварного продольного шва pshкритич = 105,985 кгс/см2. Результаты вычислений показывают, что разрушение трубы при гидроиспытаниях на трассе началось несколько раньше, чем испытательное давление в нефтепроводе достигло значения 109,8 кгс/см2.

Рис. 3. Дефекты сварного соединения в области разрыва трубы

 

Литература:

 

1.      Шинкин В. Н. Механика сплошных сред для металлургов. - М: Изд. Дом МИСиС, 2014. - 628 с.

2.      Шинкин В. Н. Сопротивление материалов для металлургов. - М: Изд. Дом МИСиС, 2013. - 655 с.

3.      Шинкин В. Н. Сопротивление материалов. Простые и сложные виды деформаций в металлургии. - М: Изд. Дом МИСиС, 2008. - 307 с.

4.      Шинкин В. Н. Теоретическая механика для металлургов. - М: Изд. Дом МИСиС, 2012. - 679 с.

5.      Шинкин В. Н. Математическая модель правки стальной полосы на пятироликовой листоправильной машине фирмы Fagor Arrasate // Молодой ученый. 2015. № 8 (88). С. 344-349.

6.      Шинкин В. Н. Правка толстой стальной полосы на одиннадцатироликовой листоправильной машине линии поперечной резки фирмы Fagor Arrasate // Молодой ученый. 2015. № 9 (89). С. 359-365.

7.      Шинкин В. Н. Расчет технологических параметров правки тонкой стальной полосы на пятнадцатироликовой листоправильной машине фирмы Fagor Arrasate // Молодой ученый. 2015. № 10 (90). С. 361-366.

8.      Шинкин В. Н. Холодная правка толстого стального листа на девятироликовой машине фирмы SMS Siemag на металлургическом комплексе стан 5000 // Молодой ученый. 2015. № 11 (91). С. 467–472.

9.      Шинкин В. Н. Четырехроликовый режим холодной правки толстого стального листа на пятироликовой листоправильной машине фирмы Fagor Arrasate // Молодой ученый. 2015. № 12 (92). С. 356–361.

10.  Шинкин В. Н. Упругопластическая деформация металлического листа на трехвалковых вальцах // Молодой ученый. 2015. № 13 (93). С. 225–229.

11.  Шинкин В. Н. Шестироликовый режим предварительной правки стальной полосы на листоправильной машине фирмы Fagor Arrasate // Молодой ученый. 2015. № 14 (94).

12.  Шинкин В. Н., Уандыкова С. К. Гибка стальной листовой заготовки на кромкогибочном прессе при производстве труб большого диаметра // Известия Кыргызского государственного технического университета им. И. Раззакова. 2009. № 16. С. 110−112.

13.  Шинкин В. Н. Гофр продольной кромки листа при его формовке на кромкогибочном прессе // Машиностроение и безопасность жизнедеятельности. 2009. Вып. 6. С. 171−174.

14.  Шинкин В. Н., Коликов А. П. Моделирование процесса пластического формоизменения листовой заготовки для производства труб большого диаметра // Обработка металлов давлением, 2011. № 3(28). С. 7-11.

15.  Шинкин В. Н., Коликов А. П. Формовка листовой заготовки в кромкогибочном прессе и условие возникновение гофра при производстве труб магистральных трубопроводов // Производство проката. 2011. № 4. С. 14−22.

16.  Шинкин В. Н., Коликов А. П. Упругопластическое изменение металла на кромкогибочном прессе при формовке труб большого диаметра // Сталь. 2011. № 6. С. 53-56.

17.  Shinkin V. N., Kolikov A. P. Elastoplastic shaping of metal in an edge-ending press in the manufacture of large-diameter pipe // Steel in Translation. 2011. Vol. 41. No. 6. P. 528-531.

18.  Шинкин В. Н., Коликов А. П. Модель пластического формоизменения кромок листовой заготовки при производстве труб большого диаметра для магистральных трубопроводов // Известия вузов. Черная металлургия. 2011. № 9. С. 45-49.

19.  Шинкин В. Н. Математическое моделирование процессов производства труб большого диаметра для магистральных трубопроводов // Вестник Саратовского государственного технического университета. 2011. № 4 (62). Вып. 4. С. 69−74.

20.  Шинкин В. Н., Коликов А. П., Барыков А. М. Технологические расчеты процессов производства труб большого диаметра по технологии SMS Meer // Металлург. 2011. № 11. С. 77−81.

21.  Shinkin V. N., Kolikov A. P. Engineering calculations for processes involved in the production of large-diameter pipes by the SMS Meer technology // Metallurgist. 2012. Vol. 55. Nos. 11-12. P. 833-840.

22.  Шинкин В. Н., Коликов А. П. Моделирование процесса формовки заготовки для труб большого диаметра // Сталь. 2011. № 1. С. 54−58.

23.  Shinkin V. N., Kolikov A. P. Simulation of the shaping of blanks for large-diameter pipe // Steel in Translation. 2011. Vol. 41. No. 1. P. 61-66.

24.  Шинкин В. Н., Барыков А. М. Расчет формы трубной заготовки при гибке на кромкогибочном и трубоформовочном прессах фирмы SMS Meer при производстве труб большого диаметра по схеме JCOE // Производство проката. 2014. № 12. С. 13−20.

25.  Шинкин В. Н., Коликов А. П., Мокроусов В. И. Расчет максимальных напряжений в стенке трубы при экспандировании с учетом остаточных напряжений заготовки после трубоформовочного пресса SMS Meer // Производство проката. 2012. № 7. С. 25−29.

26.  Шинкин В. Н., Коликов А. П. Моделирование процессов экспандирования и гидроиспытания труб большого диаметра для магистральных трубопроводов // Производство проката. 2011. № 10. С. 12−19.

27.  Шинкин В. Н. Критерий перегиба в обратную сторону свободной части листовой заготовки на трубоформовочном прессе SMS Meer при производстве труб большого диаметра // Производство проката. 2012. № 9. С. 21−26.

28.  Шинкин В. Н., Барыков А. М. Гибка стального листа на трубоформовочном прессе при производстве труб большого диаметра // Сталь. 2015. № 4. С. 38−42.

29.  Шинкин В. Н. Производство труб большого диаметра по схеме JCOE фирмы SMS Meer для магистральных трубопроводов // Актуальные проблемы гуманитарных и естественных наук. 2015. № 3 (74). Часть 1. С. 64-67.

30.  Шинкин В. Н. Расчет технологических параметров кромкогибочного пресса фирмы SMS Meer // Актуальные проблемы гуманитарных и естественных наук. 2015. № 4 (75). Часть 1. С. 114-119.

31.  Шинкин В. Н. Математический критерий возникновения гофра при формовке стальной листовой заготовки на кромкогибочном прессе SMS Meer // Актуальные проблемы гуманитарных и естественных наук. 2015. № 5 (76) Часть 1. С. 96–99.

32.  Шинкин В. Н. Расчет усилий трубоформовочного пресса SMS Meer при изгибе плоской толстой стальной заготовки при производстве труб большого диаметра // Актуальные проблемы гуманитарных и естественных наук. 2015. № 6 (77). Часть 1. С. 115–118.

33.  Шинкин В. Н. Оценка усилий трубоформовочного пресса SMS Meer при изгибе стальной цилиндрической заготовки // Актуальные проблемы гуманитарных и естественных наук. 2015. № 7 (78).

34.  Шинкин В. Н. Сила давления пуансона трубоформовочного пресса SMS Meer при изгибе частично изогнутой толстой стальной заготовки // Актуальные проблемы гуманитарных и естественных наук. 2015. № 8 (79).

35.  Шинкин В. Н., Барыков А. М., Коликов А. П., Мокроусов В. И. Критерий разрушения труб большого диаметра при несплавлении сварного соединения и внутреннем давлении // Производство проката. 2012. № 2. С. 14−16.

36.  Шинкин В. Н., Мокроусов В. И. Критерий разрыва труб газонефтепроводов при дефекте «раскатной пригар с риской» // Производство проката. 2012. № 12. С. 19-24.

37.  Шинкин В. Н., Федотов О. В. Расчет технологических параметров правки горячекатаной рулонной полосы на пятироликовой машине линии Fagor Arrasate // Производство проката. 2013. № 9. С. 43-48.

38.  Шинкин В. Н., Барыков А. М. Расчет технологических параметров холодной правки стального листа на девятироликовой машине SMS Siemag металлургического комплекса стан 5000 // Производство проката. 2014. № 5. С. 7-15.

39.  Шинкин В. Н. Расчет технологических параметров правки стального листа на одиннадцатироликовой листоправильной машине линии поперечной резки фирмы Fagor Arrasate // Производство проката. 2014. № 8. С. 26-34.

40.  Шинкин В. Н. Математическая модель правки тонкого стального листа на пятнадцатироликовой листоправильной машине линии поперечной резки фирмы Fagor Arrasate // Производство проката. 2015. № 1. С. 42−48.

41.  Пермичев Н. Ф., Барыков А. М., Палева О. А. Управление инновационным потенциалом предприятия. - Нижний Новгород: Изд. ВВАГС, 2008. - 83 с.

42.  Скороходов В. Н., Чернов П. П., Мухин Ю. А., Бельский С. М. Математическая модель процесса свободного уширения при прокатке полос // Сталь. 2001. № 3. С. 38−40.

43.  Скороходов В. Н., Мухин Ю. А., Бельский С. М. Нейтральные углы при прокатке в валках неравных диаметров, вращающихся с одинаковой угловой скоростью // Производство проката. 2006. № 5. С. 2−6.

44.  Скороходов В. Н., Мухин Ю. А., Бельский С. М. Контактное давление при тонколистовой прокатке в валках неравных диаметров, вращающихся с одинаковой угловой скоростью // Производство проката. 2007. № 2. С. 15−20.

45.  Мухин Ю. А., Бельский С. М. О допустимости одного упрощения при анализе процесса несимметричной тонколистовой прокатки // Производство проката. 2007. № 7. С. 11−13.

46.  Скороходов В. Н., Мухин Ю. А., Бельский С. М. Энергетический баланс и величина нейтральных углов при прокатке в валках неравных диаметров // Производство проката. 2007. № 9. С. 15−18.

47.  Бельский С. М., Мухин Ю. А. Нейтральные углы и контактное давление при тонколистовой прокатке со скоростной асимметрией // Производство проката. 2007. № 11. С. 13−17.

48.  Скороходов В. Н., Мухин Ю. А., Бельский С. М., Мазур С. И. Особенности профилировок рабочих валков для клетей с осевой сдвижкой. Сообщение 1 // Производство проката. 2007. № 12. С. 17−19.

49.  Бельский С. М. Влияние формы эпюры переднего удельного натяжения на распределение давления прокатки и выходных напряжений по ширине полосы // Известия высших учебных заведений. Черная металлургия. 2008. № 1. С. 43-46.

50.  Скороходов В. Н., Мухин Ю. А., Бельский С. М., Мазур С. И. Особенности профилировок рабочих валков для клетей с осевой сдвижкой. Сообщение 2 // Производство проката. 2008. № 1. С. 21-24.

51.  Бельский С. М. О некоторых эффектах применения осевой сдвижки рабочих валков // Производство проката. 2008. № 7. С. 21−24.

52.  Бельский С. М., Мухин Ю. А., Мазур И. П. Теоретический анализ влияния натяжений на уширение металла при тонколистовой прокатке // Производство проката. 2008. № 11. С. 13-17.

Основные термины (генерируются автоматически): сварной шов, продольный сварной шов, частичное несплавление, внутренний сварной шов, основной металл трубы, сварное соединение, глубина несплавления, испытательное давление, наружная изоляция трубы, стальной лист.


Ключевые слова

стальные сварные трубы большого диаметра, критическое давление разрыва трубы, модель нелинейной упругопластической сплошной среды

Похожие статьи

Критерий разрушения труб при дефекте раскатной пригар

Предложен критерий упругопластического разрушения стальных труб большого диаметра при дефекте раскатной пригар. Результаты исследования могут быть использованы при диагностике причин разрушения стальных труб большого диаметра магистральных газонефтеп...

Разрушение стальных труб при дефекте «раскатанный пригар с риской»

Предложен критерий упругопластического разрушения стальных труб большого диаметра при дефекте «раскатанный пригар с риской». Результаты исследования могут быть использованы при диагностике причин разрушения стальных труб большого диаметра магистральн...

Гидроиспытания стальных труб на прочность на заводе. Труба с «донышками»

Представлен аналитический метод расчета технологических параметров процессов гидроиспытания труб большого диаметра: критического давления в трубе и размеров пластической и упругой зон в стенке трубы при закритических давлениях. На всех стадиях процес...

Влияние импульсного тока высокой плотности на эффективность пластической деформации титанового сплава ВТ6

Рассмотрены вопросы пластической деформации проката титанового сплава ВТ6. Установлены закономерности зависимости степени обжатия от режимов электропластической прокатки. Было проведено процентное измерение деформации, анализ макроструктуры и поверхн...

Воздействие усадочных явлений на защитно-отделочное покрытие стен из пенобетона

Показана кинетика усадочных деформаций в полимерцементных составах с учетом количественных величин полимерных добавок поливинилацетатной дисперсии или каучукового латекса. Представлена информация о влиянии изменяющихся температур и количества добавок...

Исследование численной модели трубобетонной колонны круглого сечения в ПК Ansys Workbench

Для анализа напряженно-деформированного состояния трубобетонной колонны круглого сечения была выполнена конечно-элементная модель в программном комплексе Ansys Workbench с учетом физической, геометрической и контактной нелинейности. Полученная расчет...

Ручная дуговая сварка металлов малых толщин

Рассмотрены вопросы, возникающие при эксплуатации сварочных инверторов на примере сварки малых толщин. Проведен анализ методов повышения качества сварного соединения плавящимся электродом. Предложен метод повышения качества сварных соединений металло...

Вопросы повышения хладостойкости крепежа из теплоустойчивой стали 25Х1МФ для трубопроводов газоперекачивающих агрегатов с рабочей температурой до 450 °C

В статье рассматривается влияние используемой технологии термической обработки, а также качества используемой стали на ударную вязкость KCVt=-30°C крепежа из 25Х1МФ. Проведены теоретические расчеты скоростей охлаждения при закалке, а также нагрева пр...

Влияние жесткости оборудования на стойкость фрез с мелкоразмерным периодическим профилем

Представлены методика измерений зазоров в кинематических цепях оборудования для фрезерования мелкоразмерных периодических профилей, результаты стойкостных испытаний фрез для обработки мелкоразмерных периодических профилей с различными схемами формиро...

Расчет технологических параметров правки тонкой стальной полосы на пятнадцатироликовой листоправильной машине фирмы Fagor Arrasate

Предложен математический метод определения оптимальных технологических параметров холодной правки тонкого стального листа на пятнадцатироликовой листоправильной машине испанской фирмы Fagor Arrasate. Результаты исследований могут быть использованы на...

Похожие статьи

Критерий разрушения труб при дефекте раскатной пригар

Предложен критерий упругопластического разрушения стальных труб большого диаметра при дефекте раскатной пригар. Результаты исследования могут быть использованы при диагностике причин разрушения стальных труб большого диаметра магистральных газонефтеп...

Разрушение стальных труб при дефекте «раскатанный пригар с риской»

Предложен критерий упругопластического разрушения стальных труб большого диаметра при дефекте «раскатанный пригар с риской». Результаты исследования могут быть использованы при диагностике причин разрушения стальных труб большого диаметра магистральн...

Гидроиспытания стальных труб на прочность на заводе. Труба с «донышками»

Представлен аналитический метод расчета технологических параметров процессов гидроиспытания труб большого диаметра: критического давления в трубе и размеров пластической и упругой зон в стенке трубы при закритических давлениях. На всех стадиях процес...

Влияние импульсного тока высокой плотности на эффективность пластической деформации титанового сплава ВТ6

Рассмотрены вопросы пластической деформации проката титанового сплава ВТ6. Установлены закономерности зависимости степени обжатия от режимов электропластической прокатки. Было проведено процентное измерение деформации, анализ макроструктуры и поверхн...

Воздействие усадочных явлений на защитно-отделочное покрытие стен из пенобетона

Показана кинетика усадочных деформаций в полимерцементных составах с учетом количественных величин полимерных добавок поливинилацетатной дисперсии или каучукового латекса. Представлена информация о влиянии изменяющихся температур и количества добавок...

Исследование численной модели трубобетонной колонны круглого сечения в ПК Ansys Workbench

Для анализа напряженно-деформированного состояния трубобетонной колонны круглого сечения была выполнена конечно-элементная модель в программном комплексе Ansys Workbench с учетом физической, геометрической и контактной нелинейности. Полученная расчет...

Ручная дуговая сварка металлов малых толщин

Рассмотрены вопросы, возникающие при эксплуатации сварочных инверторов на примере сварки малых толщин. Проведен анализ методов повышения качества сварного соединения плавящимся электродом. Предложен метод повышения качества сварных соединений металло...

Вопросы повышения хладостойкости крепежа из теплоустойчивой стали 25Х1МФ для трубопроводов газоперекачивающих агрегатов с рабочей температурой до 450 °C

В статье рассматривается влияние используемой технологии термической обработки, а также качества используемой стали на ударную вязкость KCVt=-30°C крепежа из 25Х1МФ. Проведены теоретические расчеты скоростей охлаждения при закалке, а также нагрева пр...

Влияние жесткости оборудования на стойкость фрез с мелкоразмерным периодическим профилем

Представлены методика измерений зазоров в кинематических цепях оборудования для фрезерования мелкоразмерных периодических профилей, результаты стойкостных испытаний фрез для обработки мелкоразмерных периодических профилей с различными схемами формиро...

Расчет технологических параметров правки тонкой стальной полосы на пятнадцатироликовой листоправильной машине фирмы Fagor Arrasate

Предложен математический метод определения оптимальных технологических параметров холодной правки тонкого стального листа на пятнадцатироликовой листоправильной машине испанской фирмы Fagor Arrasate. Результаты исследований могут быть использованы на...

Задать вопрос