Снижение погрешности гамма-спектрометрических измерений обогащения ядерных материалов | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 4 января, печатный экземпляр отправим 8 января.

Опубликовать статью в журнале

Библиографическое описание:

Семенов, А. О. Снижение погрешности гамма-спектрометрических измерений обогащения ядерных материалов / А. О. Семенов, М. С. Кузнецов, А. С. Захаров, Д. С. Заплаткина. — Текст : непосредственный // Молодой ученый. — 2015. — № 10 (90). — С. 309-312. — URL: https://moluch.ru/archive/90/18908/ (дата обращения: 22.12.2024).

Проведен анализ погрешности определения обогащения образцов урана с помощью неразрушающих методов анализа с целью обеспечения функционирования системы учета и контроля ядерных материалов. Измерения проводились с помощью сцинтилляционного детектора на основе кристалла иодида натрия и полупроводникового германиевого детектора. Для измерения были использованы образцы, содержащие оксид урана различной массы. С помощью статистических методов обработки измерений было установлено, что погрешность определения обогащения при измерении сцинтилляционным детектором может доходить до 82 %. При использовании рассчитанной поправки смещения на основе данных полученных с помощью полупроводникового детектора было определено, что погрешность определения обогащения может быть снижена в среднем на 47,2 %. Таким образом, учет поправок, рассчитанных статистическими методами позволяет использовать сцинтилляционные детекторы для нужд учета и контроля ядерных материалов.

Ключевые слова: обогащение, количество неучтенного материала (КНМ), сцинтилляционный детектор.

 

Одной из систем, обеспечивающих необходимый уровень наблюдения за деятельностью в атомной промышленности является система учета и контроля ядерных материалов, задачами которой являются непрерывное систематическое обеспечение точности информации о ядерном материале и обнаружение несанкционированных действий. Учет ядерных материалов основывается на результатах измерений количественных характеристик и атрибутивных признаков ядерных материалов.

Развитие и совершенствование неразрушающих методов анализа изотопного состава непосредственно связано с решением практических задач в области учета и контроля ядерных материалов, а также обнаружения и предотвращения их незаконного оборота. Одним из основных методов неразрушающего анализа является гамма-спектрометрия, нашедшая широкое применение в области контроля за ядерными материалами. Данный метод является основным при определении изотопного состава ядерных материалов и обогащения урана [1].

В свою очередь любой процесс измерений неизбежно связан с необходимостью обработки данных. Наиболее важными аспектами обработки результатов анализов являются точность и правильность расчетов, которая включает в себя учет погрешностей на всех этапах работы и их корректную интерпретацию [2].

Исходя из этого целью работы является оптимизация процесса анализа изотопного состава урана при использовании спектрометрического тракта на основе сцинтилляционного NaI(Tl) детектора, посредством снижения погрешности результатов измерений с помощью применения статистических методов.

Для определения погрешности измерений необходимо провести серию экспериментов по определению количества ядерного материала. В работе использовался спектрометрический тракт на базе сцинтилляционного NaI(Tl) детектора (Canberra, модель 802–2x2), обработка спектров производилась в программной среде Genie-2000, в качестве образцов был использован диоксида урана UO2 различной массы обогащением по U235 2 %. Идентификация нуклидов проводится по созданной библиотеке нуклидов. Для каждого источника проводится по 3 измерения на расстоянии 0 см от детектора по 1200 с живого времени. Результаты измерений представлены в таблице [3,4].

Таблица 1

Результаты измерения образцов с помощью сцинтилляционного детектора

Масса образца, г

4

6

8

10

12

14

Рассчитанное обогащение, %

0,4557

0,3221

0,9272

0,4630

0,4886

0,4812

0,3117

0,8896

0,9654

0,5847

0,9442

0,3015

0,3037

0,2660

0,9389

0,6649

0,8236

0,5922

0,8024

0,2670

0,5509

0,5418

0,8995

0,4091

0,3157

0,8896

0,9674

0,6159

0,6552

0,4562

Среднее обогащение, %

0,3570

0,4926

0,9438

0,5709

0,7521

0,4583

Дисперсия измеренного результата

0,0574

0,4905

0,0004

0,0317

0,0985

0,1024

Абсолютная погрешность измерения обогащения

1,6430

1,5074

1,0562

1,4291

1,2479

1,5417

Относительная погрешность измерения обогащения, %

82,1492

75,3710

52,8079

71,4569

62,3940

77,0843

 

Как видно из таблицы, погрешность результатов измерений значима и в условиях множественности измерений вносит существенную неопределенность. Для увеличения точности измерений применялись методы математической статистики.

Для оценки систематической погрешности и введения поправки смещения был использован метод нескольких образцов. В качестве более точного метода использовался полупроводниковый германиевый детектор высокого разрешения фирмы Canberra в совокупности с установленной управляющей средой Genie-2000 [3].

Для расчета оценки смещения проводятся измерения при помощи того же набора образцов диоксида урана. Для каждого источника проводится по 3 измерения на расстоянии 0 см от детектора по 1200 с живого времени. Средние значения обогащения, измеренные с помощью полупроводникового детектора, рассматриваются в качестве принятого значения.

Расчет оценки смещения производился по формулам [5]:

где  — оценка смещения (постоянной составляющей систематической погрешности);

m — количество используемых образцов;

nk — количество измерений k-го образца;

n — суммарное число измерений;

 — принятое значение измеряемой величины k-го образца (определяется с помощью более точного метода);

 — стандартное отклонение принятого значения k-го образца;

 — среднее измеренное значение величины k-го образца;

 — выборочная дисперсия измеряемой величины.

Результаты расчета оценки смещения представлены в таблице 2.

Таблица 2

Оценка смещения определения массы образца

Номер образца, k

σ2

s2

w

θ

1

0,00008

0,05738

23,00663

-1,35436

2

0,00366

0,49054

21,25564

3

0,00181

0,00043

22,12301

4

0,00022

0,03171

22,92836

5

0,00003

0,09854

23,02916

6

0,00005

0,10243

23,02232

 

Полученная оценка смещения вводится в качестве поправки каждого измеренного значения с противоположным знаком, компенсируя, таким образом, вычисленное смещение. Результаты определения обогащения урана с помощью сцинтилляционного детектора с учетом коррекции, представлены в таблице 3.

Таблица 3

Определение обогащения урана NaI(Tl) детектором с учетом коррекции

Масса образца, г

4

6

8

10

12

14

Обогащение, определенное без применения коррекции, %

0,438

0,527

0,870

0,574

0,762

0,448

Относительная погрешность определения обогащения без применения коррекции

78,109

73,656

56,501

71,297

61,890

77,598

Обогащение, определенное с применением коррекции, %

1,792

1,881

2,224

1,928

2,117

1,802

относительная погрешность определения обогащения с применением коррекции

10,390

5,938

11,217

3,579

5,828

9,880

 

По результатам анализа измерений было установлено, что введение поправки смещения результатов измерений, определенной с помощью более точного метода анализа стандартных образцов и математически-статистических приемов, позволяет уменьшить относительную систематическую составляющую погрешности измерений рассматриваемым детектором в среднем на 47,2 %. Основное условие, используемое для оценки смещения — образцы должны быть максимально приближены по физическому, химическому и материальному составу к исследуемым с помощью рассматриваемого детектора образцам. В условиях нашего эксперимента это условие выполняется, поскольку использовался один набор образцов урана.

Поскольку основной вклад в погрешность измерений вносит систематическая погрешность, рассмотрим зависимость величины количества неучтенного материала (КНМ) от систематической погрешности:

Зависимость изменения величины КНМ, ее дисперсии, стандартного отклонения и доверительных интервалов выражается формулами [5]:

где  — дисперсия КНМ,

 — дисперсия систематической погрешности для j-й стары;

S — весовой коэффициент дисперсии систематической погрешности для j-й страты

 — доверительный интервал при заданном уровне доверительной вероятности.

На основе расчетов произведенных по формулам получен график зависимости изменения величины КНМ от размера страты и средней массы каждого элемента в страте.

Рис. 1. Изменение величины КНМ от размера страты и массы элементов

 

При уменьшении доверительного интервала уменьшается разброс значений величины КНМ, которые могут быть приняты обусловленными погрешностями измерений, следовательно, увеличивается вероятность обнаружения потери или переключения материалов. Увеличение вероятности обнаружения потерь или переключения материалов при применение рассмотренного метода в среднем составило 14,6 %

В заключении необходимо отметить следующие:

-                   по результатам анализа результатов была произведена оценка поправки на смещение, которая составила 1,35 %. Применение коррекции смещения позволило уменьшить относительную систематическую погрешности измерений сцинтилляционным детектором на 47,2 %;

-                   установлена зависимость изменения величины количества неучтенного материала, дисперсии, стандартного отклонения и доверительных интервалов КНМ, а также вероятности обнаружения переключения ядерных материалов при изменении погрешности измерений. При применении рассмотренного метода увеличение вероятности обнаружения переключения ЯМ составляет порядка 14,6 %.

Таким образом, при применении статистических методов для снижения погрешности измерений результаты измерений обогащения урана сцинтилляционным детектором могут быть использованы в задачах учета и контроля с приемлемой точностью.

 

Литература:

 

1.                  IAEA safeguards glossary. — 2001 ed. — Vienna: IAEA, 2002–230 с. — (International nuclear verification series, ISSN 1020–6205; no. 3)

2.                  НП-030–12 «Основные правила учета и контроля ядерных материалов»: Федеральные нормы и правила, утв. приказом Ростехнадзора от 17.04.2012 N 255 — М.: Минюст России, 2012–23с.

3.                  Canberra Industries. Canberra Scintillation Detectors — Model 802/ — [Электронный ресурс] Режим доступа: http://www2.ph.ed.ac.uk/~td/SHlab/Projects/EPR/802.pdf, свободный. — Загл. с экрана. — Яз. англ. Дата обращения: 12.11.2014 г

4.                  Saint Gobain Crystals. Physical Properties of Common Inorganic Scintillators./ — [Электронный ресурс] Режим доступа: http://www.hep.caltech.edu/~zhu/papers/08_tns_crystal.pdf, свободный. — Загл. с экрана. — Яз. Англ. Дата обращения: 13.11.2014 г

5.                  Кремер Н. Ш. Теория вероятностей и математическая статистика/ учебник. — М.: ЮНИТИ, 2000. — 543 с 42

Основные термины (генерируются автоматически): сцинтилляционный детектор, систематическая погрешность, помощь, масса образца, материал, неучтенный материал, обогащение, обогащение урана, оценка смещения, стандартное отклонение.


Ключевые слова

обогащение, количество неучтенного материала (КНМ), сцинтилляционный детектор., сцинтилляционный детектор

Похожие статьи

Влияние расходящегося магнитного поля на равномерность покрытия, нанесённого методом вакуумно-дугового испарения

Покрытия, нанесенные с помощью вакуумно-дугового испарения, являются одним из перспективных направлений развития современной промышленности. В данной технологии широко применяются магнитные поля различных конфигураций, в том числе для дуговых испарит...

Нейтронно-физические расчеты в обоснование безопасности ядерных реакторов нового поколения

Целью данной работы является расчет плотностного и пустотного эффектов реактивности на примере реактора типа БРЕСТ со свинцовым охлаждением. Исследуется положительный эффект реактивности (ПЭР) — полное или частичное осушении активной зоны ядерного ре...

Анализ эффективности применения спектральной шумометрии и термодинамического моделирования при диагностике технического состояния скважин

В статье представлены результаты интерпретации трех нагнетательных скважин. Выполнено определение профиля приемистости и оценено техническое состояние скважин. При определении данных показателей использованы комплексные промысловые геофизические мето...

Обоснование возможности прогноза изменения коэффициента продуктивности газовых и газоконденсатных скважин по данным их исследований при установившихся режимах

Коэффициент продуктивности скважин является одним из широко используемых параметров в практике разработки газовых и газоконденсатных месторождений. Правильное установление текущей величины этого параметра и закономерности его изменения во времени, по...

Экспериментальные исследования и анализ характеристик предела прочности морского льда на изгиб вдоль побережья Бохайского залива

При освоении нефтегазовых ресурсов в Бохайском заливе важное влияние на процесс определения проектных параметров морских сооружений, а также выявления динамики ледяного покрова оказывают физические и механические свойства морского льда. В настоящее в...

Методы идентификации теплофизических параметров композитных материалов

Для автоматизированного проектирования изделий, изготовленных из композиционных материалов, в соответствии с требованиями технического задания и условиями эксплуатации, важно иметь в базе данных значения определённых теплофизических характеристик исп...

Исследование диагностических признаков технического состояния газоперекачивающих агрегатов ГТК -25і фирмы Нуово-Пиньоне

Обосновывается необходимость проведения диагностирования технического состояния газоперекачивающих агрегатов (ГПА) ГТК 25і, которые используются на магистральном газопроводе «Уренгой — Помары — Ужгород». Приводится анализ методов диагностирования тех...

Исследование механизма намагничивания образца с использованием стандартной последовательности измерения

В данной статье я кратко рассмотрю основные принципы магнитометрии при температурах много ниже температуры замерзания дисперсионной среды образца, которая широко используется при изучении магнитных свойств таких образцов как магнитная жидкость. Здесь...

Анализ эффективности оригинальной шкалы оценки риска травматизма

В ходе данной исследовательской работы была протестирована оригинальная шкала оценки риска травматизма. Цель исследования — провести анкетирование 25 человек и рассчитать вероятность риска травматизма, используя авторскую методику оценки и шкалу FRAX...

Сравнительный анализ температур по результатам численного расчета в программе Frost 3D и данным мониторинга для сооружения на многолетнемерзлых грунтах

Геотехнический мониторинг сооружений на многолетнемерзлых грунтах включает в себя измерения температур грунта и осадок фундаментов. Анализ данных мониторинга обычно проводят с целью прогноза осадок фундаментов на срок службы сооружения. Так как осадк...

Похожие статьи

Влияние расходящегося магнитного поля на равномерность покрытия, нанесённого методом вакуумно-дугового испарения

Покрытия, нанесенные с помощью вакуумно-дугового испарения, являются одним из перспективных направлений развития современной промышленности. В данной технологии широко применяются магнитные поля различных конфигураций, в том числе для дуговых испарит...

Нейтронно-физические расчеты в обоснование безопасности ядерных реакторов нового поколения

Целью данной работы является расчет плотностного и пустотного эффектов реактивности на примере реактора типа БРЕСТ со свинцовым охлаждением. Исследуется положительный эффект реактивности (ПЭР) — полное или частичное осушении активной зоны ядерного ре...

Анализ эффективности применения спектральной шумометрии и термодинамического моделирования при диагностике технического состояния скважин

В статье представлены результаты интерпретации трех нагнетательных скважин. Выполнено определение профиля приемистости и оценено техническое состояние скважин. При определении данных показателей использованы комплексные промысловые геофизические мето...

Обоснование возможности прогноза изменения коэффициента продуктивности газовых и газоконденсатных скважин по данным их исследований при установившихся режимах

Коэффициент продуктивности скважин является одним из широко используемых параметров в практике разработки газовых и газоконденсатных месторождений. Правильное установление текущей величины этого параметра и закономерности его изменения во времени, по...

Экспериментальные исследования и анализ характеристик предела прочности морского льда на изгиб вдоль побережья Бохайского залива

При освоении нефтегазовых ресурсов в Бохайском заливе важное влияние на процесс определения проектных параметров морских сооружений, а также выявления динамики ледяного покрова оказывают физические и механические свойства морского льда. В настоящее в...

Методы идентификации теплофизических параметров композитных материалов

Для автоматизированного проектирования изделий, изготовленных из композиционных материалов, в соответствии с требованиями технического задания и условиями эксплуатации, важно иметь в базе данных значения определённых теплофизических характеристик исп...

Исследование диагностических признаков технического состояния газоперекачивающих агрегатов ГТК -25і фирмы Нуово-Пиньоне

Обосновывается необходимость проведения диагностирования технического состояния газоперекачивающих агрегатов (ГПА) ГТК 25і, которые используются на магистральном газопроводе «Уренгой — Помары — Ужгород». Приводится анализ методов диагностирования тех...

Исследование механизма намагничивания образца с использованием стандартной последовательности измерения

В данной статье я кратко рассмотрю основные принципы магнитометрии при температурах много ниже температуры замерзания дисперсионной среды образца, которая широко используется при изучении магнитных свойств таких образцов как магнитная жидкость. Здесь...

Анализ эффективности оригинальной шкалы оценки риска травматизма

В ходе данной исследовательской работы была протестирована оригинальная шкала оценки риска травматизма. Цель исследования — провести анкетирование 25 человек и рассчитать вероятность риска травматизма, используя авторскую методику оценки и шкалу FRAX...

Сравнительный анализ температур по результатам численного расчета в программе Frost 3D и данным мониторинга для сооружения на многолетнемерзлых грунтах

Геотехнический мониторинг сооружений на многолетнемерзлых грунтах включает в себя измерения температур грунта и осадок фундаментов. Анализ данных мониторинга обычно проводят с целью прогноза осадок фундаментов на срок службы сооружения. Так как осадк...

Задать вопрос