Библиографическое описание:

Биялт М. А., Плотникова А. А., Урьев Е. В. Расчетное исследование вибрационных характеристик динамической системы «Ротор – Подшипники – Опоры» // Молодой ученый. — 2012. — №11. — С. 23-26.

Надёжная эксплуатация агрегатов роторного типа в значительной степени определяется качеством их вибрационной отстройки от резонансов. Надежность методов расчета критических частот в значительной степени зависит от достоверности данных о податливостях опор, и что очень важно, от способа схематизации расчетной схемы динамической системы и учёта свойств элементов системы, участвующих в колебательном процессе.

Влияние упруго-массовых свойств опор на динамические характеристики системы «ротор – подшипники – опоры» рассматривалось в работах [1-5].

В работе [3] показано, что система с двумя степенями свободы (рис.1а), может быть сведена в ряде случаев к эквивалентной системе c одной степенью свободы (рис.1б), при условии, что эквивалентная жесткость в этой системе определится из условия: (1)

Рис. 1. Система с двумя степенями свободы (а)
и эквивалентная ей система с одной степенью свободы (б) [3]


Если представить, что эквивалентная система есть масса, опирающаяся на опору с указанными свойствами, то из (1) следует, что эквивалентная жесткость опоры является функцией не только жесткостей упругих элементов, но и массы опоры и частоты вынужденных колебаний . Выражение является, по сути, динамической жесткостью опор, изменяющейся от значения статической жесткости (при до значения равного нулю при резонансе опоры () и принимающей отрицательное значение при частоте выше резонансной (), что подчеркивает смещение опоры в зарезонансной зоне в направлении противоположном направлению действия силы.

Анализируя формулу (1) видно, что при массе опоры равной нулю (или пренебрежительно малой) формула (1) сводится к известному соотношению для жесткости двух последовательно соединенных упругих элементов:

Характер зависимости эквивалентной жесткости от частоты колебаний показан на рис.2 для модели с параметрами Кb = Ks = 900, M = 1.


Рис. 2. Зависимость эквивалентной жесткости от частоты возбуждения


Из формулы (1) и рис.2 видно, что, почти сразу за резонансом опоры, ее эквивалентная жесткость резко возрастает, достигая значений , а затем стремится к значению жесткости .

Рассмотрим теперь влияние параметров упруго-массовых опор на критические частоты системы «ротор – подшипники – опоры». Опоры представим как элементы с сосредоточенной массой Моп и жесткостью Коп. Ротор же представляется как система с распределенными параметрами, т.е. системой со многими степенями свободы.

Расчетная схема рассматриваемой модели представляет собой вал постоянного сечения диаметром d=250 мм и длиной L=5000 мм, разбитый на N=25 участков, опирающийся на два одинаковых подшипника, установленных в двух одинаковых опорах. Общая масса ротора mрот=1200 кг. Жесткость масляного слоя подшипника (аналог жесткости Kb) принята Км.с.=100000 Н/мм, конструктивная жесткость опоры (аналог Ks) принята Коп=100000 Н/мм. Масса каждой из опор Моп = 1500 кг.

На рис.3 представлена так называемая карта критических частот исследуемого ротора, вычисленная в пакете программ DyRoBeS Rotor. Карта представляет собой зависимость критических частот ротора от жесткости опор, т.е. карта не учитывает каких – либо параметров конкретных опор.

С целью объяснения механизма качественной зависимости критических частот от приведенной жесткости опор на тот же график (рис. 3) нанесены линии эквивалентной жесткости опор, вычисленной по формуле (1). Собственная частота опор в рассматриваемом случае составила 2467 мин-1

Точки пересечения эквивалентной жесткости опор с линиями собственных частот соответствующих форм колебаний ротора и являются критическими частотами ротора на указанных опорах. На рис.3 эти точки выделены и отмечены выносками.


Рис. 3. Зависимость критических частот от эквивалентной жесткости опор


Но тогда выясняется, что в системе «ротор подшипники – опоры», при определенных упруго-массовых свойствах опор, одни и те же изгибные формы колебаний ротора могут реализоваться неоднократно!


Рис. 4. Формы колебаний ротора: а) 1-ая - 904 об/мин,

б) 2-я – 2239 об/мин, в) 3-я – 2439 об/мин, г) 4-я - 3726 об/мин, д) 5-я – 6979 об/мин.


На рис. 4 показаны формы колебаний ротора и приведены соответствующие им значения собственных частот. Из рис. 4 видно, что действительно после первой и второй собственных частот, имеющих значения 904 и 2239 об/мин и соответствующих первой и второй изгибным формам ротора, реализуется третья изгибная форма на очень податливых опорах (2439 об/мин), частота которой несущественно отличается от частоты резонанса опор (2467 об/мин). Далее снова последовательно реализуются вторая и третья изгибные формы колебаний ротора, но уже на опорах со значительно большей жесткостью. Таким образом, рассматриваемая система «ротор подшипникиопоры» характеризуется наличием «дубль-форм», которые реализуются с деформациями близкими по форме. Причем, каждая из «дубль-форм», являясь достаточно ортогональной к другим собственным формам ротора, не оказываются ортогональными к друг другу. Следствием этого является, что устраняя при балансировке неуравновешенность по одной из «дубль-форм» (уменьшая упругие деформации), в значительной степени устраняется неуравновешенность и по другой.

Выявленный в результате аналитического и численного анализа эффект повторяемости изгибных форм колебаний ротора («дубль-эффект») объясняет механизм появления целого ряда дополнительных резонансов или критических частот, наблюдаемых при экспериментальных исследованиях агрегатов роторного типа и не соответствующих расчетам, выполненным только с учетом жесткостей маслянного слоя в подшипниках и опор.


Литература:

  1. Вибрации в технике: Справочник. В 6-ти т. / Ред. совет: В.Н. Челомей (пред.). – М.: Машиностроение, 1980, - Т. 3. Колебания машин, конструкций и их элементов / Под. ред. Ф.М. Диментберга и К.С. Колесникова, 1980.

  2. Биргер И.А., Шорр Б.Ф, Иосилевич Г.Б. Расчеты на прочность деталей машин: справочник. М., 1993.

  3. Introduction to Dynamics of Rotor-Bearing Systems / Wen Jeng Chen, Edgar J. Gunter.

  4. Пановко Я.Г. Введение в теорию механических колебаний. — М.: Наука 1991 г.

  5. Тимошенко С.П. Колебания в инженерном деле. М.: «Наука», 1967.


Основные термины (генерируются автоматически): колебаний ротора, жесткости опор, критических частот, эквивалентной жесткости опор, формы колебаний ротора, форм колебаний ротора, Исследование нелинейной динамической, нелинейной динамической цепи, приведенной жесткости опор, эквивалентная жесткость, степенями свободы, формам ротора, изгибные формы колебаний, собственных частот, динамической жесткостью опор, критических частот ротора, Формы колебаний ротора, упруго-массовых свойств опор, жесткость опоры, системе электроснабжения.

Обсуждение

Социальные комментарии Cackle
Задать вопрос