Условно отрицательно определенные функции | Статья в журнале «Молодой ученый»

Библиографическое описание:

Акрамов А. А., Турдиева Ш. Б., Сафаров С. С. Условно отрицательно определенные функции // Молодой ученый. — 2017. — №6. — С. 12-13. — URL https://moluch.ru/archive/140/39402/ (дата обращения: 20.07.2018).



Пусть –трехмерный тор. Рассмотрим функцию вида

,

где –вещественнозначная условно отрицательно определенная функция на и следовательно, является четным и имеет единственный минимум в точке .

Отметим, что комплекснозначная ограниченная функция называется условно отрицательно определенным, если и

для любых и , а также для любого удовлетворяющего условию .

Положим

,

,

и

.

Основным результатом настоящей работы является следующая теорема.

Теорема 1. Функция имеет максимум в точке такое, что для некоторого имеет место нижняя оценка

.

Доказательство. Сначала напомним, что вещественнозначная четная условно отрицательно определенная функция представляется в виде [1]

,

которое эквивалентно тому, что коэффициенты Фурье с условием являются неотрицательными, т. е.

и ряд сходится абсолютно.

Так как является четной функцией, также является четной. Следовательно, из равенства

следует, что

,

где

и

.

Положим

.

Запишем функцию как сумма двух функций

и

.

Пусть –характеристическая функция множества . Положим . Тогда для любых и функция строго положительно. Так как функция имеет единственный минимум в точке , функция принадлежит Банахово пространство . Тогда для некоторого (достаточно большого) , достаточно малого и для всех имеет место неравенство

.

Из леммы Римана-Лебега следует, что

при .

Из непрерывности функции

в компактном множестве следует, что для всех и верна .

Положим . Тогда при всех имеет место . Таким образом, из , следует, что , . Следовательно,

.

Отсюда и следует доказательство теоремы 1.

Литература:

  1. C.Berg, J. P. R. Christensen and P. Ressel. Harmonic analysis on semigroups. Theory of positive definite and related functions. Graduate Texts in Mathematics. Springer-Verlag, New York, 1984, 289 pp.
Основные термины (генерируются автоматически): функция, единственный минимум.


Похожие статьи

Анализ и применение совпадающих минимумов одной функций...

Тогда функция имеет единственный невырожденный минимум в точке . Действительно, в этом случае. , где единичная матрица размера .

Об одном применение леммы Морса | Статья в журнале...

Условие 2. Функции и четны, а также функция имеет единственный минимум в точке. Замечание 1. Условия 1–2 выполняются в случае, когда.

Об одном представлении функции многих переменных, имеющей...

Условие 1. Функция является четной по совокупности переменных , ( ), имеет единственный невырожденный минимум в точке и существуют положительно определенная матрица...

Расположение собственных значений обобщенной модели...

, . Следовательно, для любого функция имеет единственный невырожденный минимум в точке . Следующая теорема описывает число собственных значений оператора .

Применение метода линейного программирования для решения...

Другими словами, необходимо максимизировать (минимизировать) линейную функцию L. Покажем, как решается указанная задача геометрическим методом...

Множество Парето в задачи максимизации функции полезности

...является выпуклой, то на бюджетном множестве существует единственная точка максимума функции

В этом случае минимум функции будет находиться внутри области ограничений.

Декомпозиционный метод решения транспортной задачи...

Легко видеть, что единственная стационарная точка функции Лагранжа в этой задаче является её глобальным минимумом.

Оптимизация по условиям Куна — Таккера | Статья в журнале...

...необходимые условия Куна-Таккера являются и достаточными условиями существования единственного

Если ограничения имеют место, то минимум функции будет условным.

Основы разработки модулярных нейрокомпьютеров для обработки...

В случае линейной модели сети и функции ошибок в виде суммы квадратов такая поверхность будет представлять собой параболоид, который имеет единственный минимум...

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Анализ и применение совпадающих минимумов одной функций...

Тогда функция имеет единственный невырожденный минимум в точке . Действительно, в этом случае. , где единичная матрица размера .

Об одном применение леммы Морса | Статья в журнале...

Условие 2. Функции и четны, а также функция имеет единственный минимум в точке. Замечание 1. Условия 1–2 выполняются в случае, когда.

Об одном представлении функции многих переменных, имеющей...

Условие 1. Функция является четной по совокупности переменных , ( ), имеет единственный невырожденный минимум в точке и существуют положительно определенная матрица...

Расположение собственных значений обобщенной модели...

, . Следовательно, для любого функция имеет единственный невырожденный минимум в точке . Следующая теорема описывает число собственных значений оператора .

Применение метода линейного программирования для решения...

Другими словами, необходимо максимизировать (минимизировать) линейную функцию L. Покажем, как решается указанная задача геометрическим методом...

Множество Парето в задачи максимизации функции полезности

...является выпуклой, то на бюджетном множестве существует единственная точка максимума функции

В этом случае минимум функции будет находиться внутри области ограничений.

Декомпозиционный метод решения транспортной задачи...

Легко видеть, что единственная стационарная точка функции Лагранжа в этой задаче является её глобальным минимумом.

Оптимизация по условиям Куна — Таккера | Статья в журнале...

...необходимые условия Куна-Таккера являются и достаточными условиями существования единственного

Если ограничения имеют место, то минимум функции будет условным.

Основы разработки модулярных нейрокомпьютеров для обработки...

В случае линейной модели сети и функции ошибок в виде суммы квадратов такая поверхность будет представлять собой параболоид, который имеет единственный минимум...

Задать вопрос