Итерационная процедура высокоточного совмещения аффинно-преобразованных изображений | Статья в сборнике международной научной конференции

Библиографическое описание:

Чекотило Е. Ю. Итерационная процедура высокоточного совмещения аффинно-преобразованных изображений [Текст] // Технические науки: проблемы и перспективы: материалы Междунар. науч. конф. (г. Санкт-Петербург, март 2011 г.). — СПб.: Реноме, 2011. — С. 188-191. — URL https://moluch.ru/conf/tech/archive/2/139/ (дата обращения: 19.12.2018).

Известные [1-2] точные методы совмещения изображений, основанные чаще всего на вычислении взаимно корреляционных функций анализируемых изображений, обладают большой вычислительной сложностью и, вследствие этого, мало приспособлены для реализации в реальном времени, особенно при идентификации параметров сложного, «аффинного», движения.

В работе для получения высокоточных оценок параметров геометрического рассогласования положения (взаимного смещения) аффинно-преобразованных изображений предложен компенсационный вариант метода функционализации [3]. Метод является обобщением известного градиентного метода вычисления «оптического потока» [4] и основан на использовании соотношения (ФС - уравнения), функционально связывающего параметры движения наблюдаемого объекта с изменениями измеримых характеристик изображения. Под измеримыми понимаются характеристики изображения, значения которых определены на подобластях изображения ненулевой меры. Здесь этот метод используется для определения параметров движения изображения, обладающего тремя степенями свободы (аффинно-преобразованного изображения без растяжения).

Постановка задачи

На анализируемом изображении, заданном равномерно ограниченной и дифференцируемой почти всюду по всем своим аргументам функцией распределения освещенности изображения яркостного объекта ( - вектор смещения в системе координат плоскости изображения, Т – операция транспонирования матрицы), выделяются подобласти – последовательные во времени кадры и ( - начальный момент времени, - кадровый период). Причем является результатом преобразования :

, (1)

- оператор вращения [4], - перенос.

При этом в каждом кадре рассматриваются изображения и соответственно.

Задачей является нахождение оператора , обратного для оператора .


Итерационная процедура определения параметров рассогласования положения изображений

В компенсационном варианте метода функционализации [5-6] для совмещения изображений используют итерационную процедуру, которая заключается в следующем. На каждой итерации (,) кадр трансформируется в кадр с помощью оператора, являющегося оценкой оператора на шаге .

По изображениям, покрываемым кадрами и методом функционализации уточняют оценку обратного оператора .

При этом каждый кадр изображения покрывают идентичной системой окон анализа ( – номер окна анализа, - номер кадра) (рис. 1) и для каждой одноименной пары окон , формируют уравнения функциональной связи вида [5]:

, (2)

где - вектор-столбец, - вектор смещения, q –переменная характеризующая изменение освещенности сцены [6];

, - функционал вида:

, (3)

- непрерывная и дифференцируемая почти всюду по всем своим аргументам функция веса;

– матрица коэффициентов, элементы которой определяют из выражений:

;

;

;

;

;

– число ФС-уравнений.

Система (2) в общем случае является переопределенной. Она дает оценки составляющих вектора смещения изображения . Система решается методом квазиобращения [5]. Итерационную процедуру

, (4)

где – матрица «коэффициентов обратной связи»; – предполагаемая оценка смещения изображения кадра относительно кадра , повторяют до тех пор, пока компоненты вектора смещения на n - ом шаге не станут меньше заданных величин , и .

Приведенный алгоритм требует настройки параметров и размеров окон анализа по условиям сходимости процедуры.

В [6] дана аналитическая оценка сходимости итерационного метода на примере тестового моночастотного изображения вида

(5)

отдельно для плоско-параллельного движения () и вращения в плоскости движения изображения.

Достаточным условием сходимости итерационной процедуры для случая плоско-параллельного движения является выполнение следующих условий, накладываемых на начальное рассогласование положения (перенос) объекта в анализируемых кадрах и значение коэффициента в (4):

. (6)

Таким образом, процесс сходится, если начальное рассогласование кадров и не превышает трети периода тестового изображения.

Условием сходимости итерационного процесса для случая чистого вращения при изменении угла поворота в пределах является:

(7)

где – приращение оценки угла поворота на итерации с номером .

Обозначим через максимальное (критическое) значение, отвечающее достаточному признаку сходимости (7). Считаем, что окна анализа имеют форму квадрата.

В таблице 1 приведена аналитическая оценка зависимости количества итераций итерационного процесса (4) от частоты тестового сигнала при критическом значении коэффициента обратной связи . Условие (7) является лишь достаточным.

Таблица 1

Длина стороны окна анализа

Погрешность приближения

Максимальное число итераций n

0,193

14

20

31

0,1763

31

45

72

0,00277

128

234

341

0,04616

20

29

46



Нетрудно показать, что значение может быть увеличено, при этом скорость сходимости увеличивается.

Результаты исследования влияния на процесс сходимости итерационной процедуры (7) для тестового изображения вида (5) представлены в таблице 2.

При увеличении сначала увеличивается количество итераций, а затем процесс (5) теряет устойчивость. Таким образом, можно сделать вывод, что наилучшая сходимость с точки зрения максимального быстродействия итерационного процесса достигается при . В таблице 2 приведены результаты, соответствующие допустимой погрешности . При других значениях значение остается в тех же пределах.


Таблица 2

Длина стороны окна анализа

Коэффициент обратной связи

Максимальное число итераций n

6

5

5

27

15

7

52

24

18

28

10

7


Заключение

В статье предложен компенсационный метод определения параметров движения изображений, основанный на итерационной процедуре совмещения изображений. Получены аналитические оценки сходимости и быстродействия метода для аффинного движения изображения, позволяющие существенно расширить область сходимости по начальным данным и уменьшить количество итераций итерационного процесса.


Литература:

  1. Fleet David J., Jepson Allan D. Computation of component image velocity from local phase information. //Int. J. Comput. Vision. 1990. - 5. N1.- pp. 77-104.

  2. Miike Hidetoshi, Nomura Atsushi, Koga Kazutoshi. Determining image flow from multiple frames based on the continuity equation. //Technol. Repts Yamaguchi Univ. - 1991. - 4. № 5. - P. 387-397.

  3. Кузнецов П.К., Семавин В.И. Метод определения параметров движения яркостного поля//Известия ВУЗов. Приборостроение. – 1990. - №6. - С. 26 – 30.

  4. Black M.J., Anandan P. A framework for the robust estimation of optical flow// ICCV’93, May. – 1993. - P. 231 - 236.

  5. Кузнецов П.К., Мартемьянов Б.В., Семавин В.И., Чекотило Е.Ю. Метод определения вектора скорости движения подстилающей поверхности// Вестник Самарского государственного технического университета. Серия Технические науки. – 2008. - № 2(22). – С. 96 - 110.

  6. Кузнецов П.К., Чекотило Е.Ю., Мартемьянов Б.В. Исследование сходимости итерационной процедуры определения параметров движения изображений методом функционализации// Вестник Самарского государственного технического университета. Серия Технические науки. – 2010. - №2(26). – С. 80 - 85.

Основные термины (генерируются автоматически): итерационная процедура, итерационный процесс, обратная связь, плоско-параллельное движение, итерация, компенсационный вариант метода, максимальное число итераций, вектор смещения, длина стороны окна анализа, аналитическая оценка сходимости.

Похожие статьи

Применение итерационного алгоритма Шульца в рекуррентных...

Итерационные методы нахождения обратных матриц: - Итерационный метод Шульца.

Равенство нулю означает, что текущее приближение совпадает с обратной матрицей. Для оценки приближения к нулю необходимо ввести — малое положительное число.

Применение метода вариационных итераций к приближенному...

Итерационный процесс продолжаем до тех пор, пока не становится достигнутой заданная точность вычислений.

Метод итерационный и итерация заключается в следующем. Решения нелинейных волновых уравнений методом...

Организация численных методов в MathCAD | Статья в журнале...

«детерминант, обратная матрица, корни. «собственные значения и векторы. «построение итераций.

Здесь B расширенная матрица , G-ленточный вид матрицы В после применения метода Гаусса, -итерационный параметр, -метод итерации, lsolve (решение ) augment, rref...

Методы решения нелинейных уравнений

Статья посвящена изучению методов решения нелинейных уравнений, в том числе, с использованием системы

Как правило на этом этапе используются итерационные методы.

Таким образом, сходимость метода касательных Ньютона очень быстрая.

Сравнительный анализ численного решения задач оптимального...

Метод итерационный и итерация заключается в следующем

Общая схема метода вариаций в пространстве управлений: Полагаем счётчик числа итераций равным нулю и задаем начальное приближение к оптимальному управлению .

Методы подавления счетного шума при решении задач физики...

Процедура повторяется до сходимости к стационарному решению. Требуемое число модельных частиц при расчете итерационным методом значительно меньше по сравнению с методом частиц в ячейках...

Восстановление простых линейных и итерационных функций...

Описанный в данной работе метод основан на анализе данных, получаемых в

Целесообразно записывать значения искомого коэффициента от итерации к итерации.

Однако для небольших функций, как линейных, так и итерационных, имеющих условные конструкции и...

Исследование методической погрешности метода...

Химмельблау Д. Анализ процессов статистическими методами. Аппроксимация полиномов n степени методом наименьших...

Как правило, для решения системы (5) применяются различные итерационные методы, например, метод простой итерации или метод Зейделя.

Численная реализация разностного метода решения одной задачи...

Как правило, для решения системы (5) применяются различные итерационные методы, например, метод простой итерации или метод Зейделя.

а) методом простых итераций

Использование значений с -й итерации, как правило, улучшает сходимость.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Применение итерационного алгоритма Шульца в рекуррентных...

Итерационные методы нахождения обратных матриц: - Итерационный метод Шульца.

Равенство нулю означает, что текущее приближение совпадает с обратной матрицей. Для оценки приближения к нулю необходимо ввести — малое положительное число.

Применение метода вариационных итераций к приближенному...

Итерационный процесс продолжаем до тех пор, пока не становится достигнутой заданная точность вычислений.

Метод итерационный и итерация заключается в следующем. Решения нелинейных волновых уравнений методом...

Организация численных методов в MathCAD | Статья в журнале...

«детерминант, обратная матрица, корни. «собственные значения и векторы. «построение итераций.

Здесь B расширенная матрица , G-ленточный вид матрицы В после применения метода Гаусса, -итерационный параметр, -метод итерации, lsolve (решение ) augment, rref...

Методы решения нелинейных уравнений

Статья посвящена изучению методов решения нелинейных уравнений, в том числе, с использованием системы

Как правило на этом этапе используются итерационные методы.

Таким образом, сходимость метода касательных Ньютона очень быстрая.

Сравнительный анализ численного решения задач оптимального...

Метод итерационный и итерация заключается в следующем

Общая схема метода вариаций в пространстве управлений: Полагаем счётчик числа итераций равным нулю и задаем начальное приближение к оптимальному управлению .

Методы подавления счетного шума при решении задач физики...

Процедура повторяется до сходимости к стационарному решению. Требуемое число модельных частиц при расчете итерационным методом значительно меньше по сравнению с методом частиц в ячейках...

Восстановление простых линейных и итерационных функций...

Описанный в данной работе метод основан на анализе данных, получаемых в

Целесообразно записывать значения искомого коэффициента от итерации к итерации.

Однако для небольших функций, как линейных, так и итерационных, имеющих условные конструкции и...

Исследование методической погрешности метода...

Химмельблау Д. Анализ процессов статистическими методами. Аппроксимация полиномов n степени методом наименьших...

Как правило, для решения системы (5) применяются различные итерационные методы, например, метод простой итерации или метод Зейделя.

Численная реализация разностного метода решения одной задачи...

Как правило, для решения системы (5) применяются различные итерационные методы, например, метод простой итерации или метод Зейделя.

а) методом простых итераций

Использование значений с -й итерации, как правило, улучшает сходимость.

Задать вопрос