Математическая модель асинхронного двигателя с переменными в произвольной системе координат | Статья в журнале «Молодой ученый»

Библиографическое описание:

Емельянов А. А., Козлов А. М., Бесклеткин В. В., Авдеев А. С., Чернов М. В., Киряков Г. А., Габзалилов Э. Ф., Фуртиков К. А., Реутов А. Я., Королев О. А. Математическая модель асинхронного двигателя с переменными в произвольной системе координат // Молодой ученый. — 2015. — №13. — С. 7-20. — URL https://moluch.ru/archive/93/20899/ (дата обращения: 23.10.2018).

Данная работа является продолжением опубликованной статьи [1], в которой были подробно показаны без сокращений способы и технологии получения пространственных векторов , , , , , , в системе абсолютных единиц.

В работах [2; 3] приведено множество вариантов конечных результатов электромагнитного момента в зависимости от произведения проекций двух векторов (  и т.д.). В этой статье сделан вывод одного из множества математических моделей асинхронного двигателя и сравнение полученных уравнений и структурной схемы с фундаментальной работой [3].

Итак, в работе [1] были получены основные уравнения асинхронного двигателя в произвольной системе координат :

Переведем эти уравнения в систему относительных единиц.

 В уравнениях (1) и (2) обе части разделим на :

                                                                                     (5)

                                                                              (6)

В уравнениях (3) и (4) обе части умножим на:

                                                                                                          (7)

                                                                                                          (8)

Итак, основные уравнения асинхронного двигателя с к. з. ротором () имеют следующий вид:

 

Электромагнитный момент определяется по формуле [2, c.131]:

                                                                                        (13)

Уравнение движения:

                                                                                                            (14)

Так как электромагнитный момент определяется через переменные и , то из уравнений исключим переменные и .

Из уравнения (12) выразим :

Обозначим , тогда

                                                                                                        (15)

Из уравнения (11) исключим :

Обозначим , тогда

Обозначим .

Тогда

                                                                                                 (16)

В уравнении (10) подставим    :

                                                  (17)

Отсюда выразим

                                                       (18)

В уравнении (17) перейдем к оператору  и разложим векторы и на проекции:

         (*)

Проекция уравнения (*) на ось    +1:

                                               (19)

Проекция уравнения (*) на ось     +j:

                                               (20)

Из уравнения (20):

Разделим обе части полученного уравнения на ():

Тогда

В соответствии с [3] перейдем к переменным   и

Выразим

                                                  (21)

Рис. 1. Структурная схема для определения .

 

Аналогично для уравнения (19):

Разделим обе части уравнения на :

                                               (22)

Полученному уравнению (22) соответствует следующая структурная схема:

Рис. 2. Структурная схема для определения .

Из уравнения (9) исключим :

Подставим в это уравнение  из уравнения (18):

Обозначим :

,

где 

Переведем уравнения с в изображениях, для этого выразим

Выразим векторы , и  через проекции:

  

           (**)

Проекция уравнения (**) на действительную ось    +1:

                                 (23)

Проекция уравнения (**) на мнимую ось     +j:

                                 (24)

Из уравнения (17) выразим :

Структурная схема для реализации тока в MatLab-Simulink дана на рис. 3.

Рис. 3. Структурная схема проекции статорного тока  на ось +1.

 

Аналогично из уравнения (24) выразим :

Структурная схема, соответствующая этому уравнению, представлена на рис. 4.

Рис. 4. Структурная схема проекции статорного тока  на ось +j.

 

Структурная схема для реализации уравнения (13) дана на рис. 5:

Рис. 5. Математическая модель электромагнитного момента m.

 

Наконец для уравнения (14):

Структурная схема дана на рис. 6.

Рис. 6. Математическая модель уравнения движения.

 

На рис. 7. Представлены субблоки из математической модели АД, преобразователя координат и блока ориентации.

Рис. 7. Система из математической модели двигателя, преобразователя координат и блока ориентации.

 

Рис. 8. Блок ориентации.

 

 

 

 


Рис. 9. Модель асинхронного двигателя.

 


Рис. 10. Преобразователь координат.


Рис. 11. Графики скорости и момента

 

Рис. 12. Ориентация системы координат по потокосцеплению ротора

 

Рис. 13. Произвольная ориентация системы координат

 

Рис. 13. Годограф изменения статорного тока  при пуске.

 

Литература:

 

1.         Пространственные векторы в асинхронном двигателе в относительной системе единиц// Молодой ученый. — 2015. — №11. — С. 133-156.

2.         Шрейнер Р. Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления [Текст]: учеб. пособие / Р. Т. Шрейнер, А. В. Костылев, В. К. Кривовяз, С. И. Шилин. Под ред. проф. д.т.н. Р.Т.Шрейнера. Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т»., 2008. 361 с.

3.         Шрейнер Р. Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты Екатеринбург УРО РАН, 2000. 654 с.

4.         Математическая модель АД в неподвижной системе координат c переменными / А. А. Емельянов [и др.] // Молодой ученый. — 2010. — №3. Т.1. — С. 8-23.

Основные термины (генерируются автоматически): Структурная схема, уравнение, электромагнитный момент, асинхронный двигатель, Проекция уравнения, блок ориентации, статорный ток, преобразователь координат, структурная схема проекции, математическая модель.


Похожие статьи

Математическое моделирование асинхронного двигателя...

структурная схема, уравнение, электромагнитный момент, неподвижная система координат, асинхронный двигатель, Проекция уравнения, статорный ток, номинальный режим, математическая модель...

Математическая модель асинхронного двигателя...

Рис. 4. Структурная схема проекции статорного тока на ось +j.

Основные термины (генерируются автоматически): уравнение, система координат, асинхронный двигатель, математическая модель, Структурная схема, вращающийся вектор, Проекция уравнения...

Моделирование САР скорости системы «АИН ШИМ – АД»...

структурная схема, математическая модель, преобразователь координат, асинхронный двигатель, статорный ток, электромагнитный момент, номер, передаточная функция, уравнение, проекция.

Математическая модель асинхронного двигателя...

структурная схема, асинхронный двигатель, уравнение, статорный ток, проекция уравнения, математическая модель, получение переменной, номинальный режим, интегрирующее звено, электромагнитный...

Математическая модель асинхронного двигателя...

асинхронный двигатель, математическая модель, структурная схема, уравнение, проекция уравнения, номинальная частота, электромагнитный момент, номинальный режим, Базисная величина системы, статорный ток.

Математическая модель асинхронного двигателя...

Математическая модель асинхронного двигателя в неподвижной системе координат с переменными iR-fR.

Окончательно уравнения (24) ÷ (27) в статорной системе координат примет следующий вид

Структурная схема для уравнения(45)

Математическая модель асинхронного двигателя во...

Структурная схема для уравнений (3) и (4): Структурная схема для уравнения (5) и (6): Рассмотрим трехфазный асинхронный короткозамкнутый двигатель со следующими номинальными данными и параметрами схемы замещения [4].

Математическая модель асинхронного двигателя...

Рис. 4. Структурная схема проекции потокосцепления статора на ось +j. Структурная схема для реализации уравнения (5) дана на рис. 5: Рис. 5. Математическая модель электромагнитного момента m.

Математическая модель САР скорости линейного асинхронного...

Уравнения преобразования, в соответствии с [3], имеют следующий вид

% Математическая модель САР скорости ЛАД с укладкой статорной обмотки классическим

Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения.

Математическое моделирование асинхронного двигателя...

структурная схема, уравнение, электромагнитный момент, неподвижная система координат, асинхронный двигатель, Проекция уравнения, статорный ток, номинальный режим, математическая модель...

Математическая модель асинхронного двигателя...

Рис. 4. Структурная схема проекции статорного тока на ось +j.

Основные термины (генерируются автоматически): уравнение, система координат, асинхронный двигатель, математическая модель, Структурная схема, вращающийся вектор, Проекция уравнения...

Моделирование САР скорости системы «АИН ШИМ – АД»...

структурная схема, математическая модель, преобразователь координат, асинхронный двигатель, статорный ток, электромагнитный момент, номер, передаточная функция, уравнение, проекция.

Математическая модель асинхронного двигателя...

структурная схема, асинхронный двигатель, уравнение, статорный ток, проекция уравнения, математическая модель, получение переменной, номинальный режим, интегрирующее звено, электромагнитный...

Математическая модель асинхронного двигателя...

асинхронный двигатель, математическая модель, структурная схема, уравнение, проекция уравнения, номинальная частота, электромагнитный момент, номинальный режим, Базисная величина системы, статорный ток.

Математическая модель асинхронного двигателя...

Математическая модель асинхронного двигателя в неподвижной системе координат с переменными iR-fR.

Окончательно уравнения (24) ÷ (27) в статорной системе координат примет следующий вид

Структурная схема для уравнения(45)

Математическая модель асинхронного двигателя во...

Структурная схема для уравнений (3) и (4): Структурная схема для уравнения (5) и (6): Рассмотрим трехфазный асинхронный короткозамкнутый двигатель со следующими номинальными данными и параметрами схемы замещения [4].

Математическая модель асинхронного двигателя...

Рис. 4. Структурная схема проекции потокосцепления статора на ось +j. Структурная схема для реализации уравнения (5) дана на рис. 5: Рис. 5. Математическая модель электромагнитного момента m.

Математическая модель САР скорости линейного асинхронного...

Уравнения преобразования, в соответствии с [3], имеют следующий вид

% Математическая модель САР скорости ЛАД с укладкой статорной обмотки классическим

Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Математическое моделирование асинхронного двигателя...

структурная схема, уравнение, электромагнитный момент, неподвижная система координат, асинхронный двигатель, Проекция уравнения, статорный ток, номинальный режим, математическая модель...

Математическая модель асинхронного двигателя...

Рис. 4. Структурная схема проекции статорного тока на ось +j.

Основные термины (генерируются автоматически): уравнение, система координат, асинхронный двигатель, математическая модель, Структурная схема, вращающийся вектор, Проекция уравнения...

Моделирование САР скорости системы «АИН ШИМ – АД»...

структурная схема, математическая модель, преобразователь координат, асинхронный двигатель, статорный ток, электромагнитный момент, номер, передаточная функция, уравнение, проекция.

Математическая модель асинхронного двигателя...

структурная схема, асинхронный двигатель, уравнение, статорный ток, проекция уравнения, математическая модель, получение переменной, номинальный режим, интегрирующее звено, электромагнитный...

Математическая модель асинхронного двигателя...

асинхронный двигатель, математическая модель, структурная схема, уравнение, проекция уравнения, номинальная частота, электромагнитный момент, номинальный режим, Базисная величина системы, статорный ток.

Математическая модель асинхронного двигателя...

Математическая модель асинхронного двигателя в неподвижной системе координат с переменными iR-fR.

Окончательно уравнения (24) ÷ (27) в статорной системе координат примет следующий вид

Структурная схема для уравнения(45)

Математическая модель асинхронного двигателя во...

Структурная схема для уравнений (3) и (4): Структурная схема для уравнения (5) и (6): Рассмотрим трехфазный асинхронный короткозамкнутый двигатель со следующими номинальными данными и параметрами схемы замещения [4].

Математическая модель асинхронного двигателя...

Рис. 4. Структурная схема проекции потокосцепления статора на ось +j. Структурная схема для реализации уравнения (5) дана на рис. 5: Рис. 5. Математическая модель электромагнитного момента m.

Математическая модель САР скорости линейного асинхронного...

Уравнения преобразования, в соответствии с [3], имеют следующий вид

% Математическая модель САР скорости ЛАД с укладкой статорной обмотки классическим

Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения.

Математическое моделирование асинхронного двигателя...

структурная схема, уравнение, электромагнитный момент, неподвижная система координат, асинхронный двигатель, Проекция уравнения, статорный ток, номинальный режим, математическая модель...

Математическая модель асинхронного двигателя...

Рис. 4. Структурная схема проекции статорного тока на ось +j.

Основные термины (генерируются автоматически): уравнение, система координат, асинхронный двигатель, математическая модель, Структурная схема, вращающийся вектор, Проекция уравнения...

Моделирование САР скорости системы «АИН ШИМ – АД»...

структурная схема, математическая модель, преобразователь координат, асинхронный двигатель, статорный ток, электромагнитный момент, номер, передаточная функция, уравнение, проекция.

Математическая модель асинхронного двигателя...

структурная схема, асинхронный двигатель, уравнение, статорный ток, проекция уравнения, математическая модель, получение переменной, номинальный режим, интегрирующее звено, электромагнитный...

Математическая модель асинхронного двигателя...

асинхронный двигатель, математическая модель, структурная схема, уравнение, проекция уравнения, номинальная частота, электромагнитный момент, номинальный режим, Базисная величина системы, статорный ток.

Математическая модель асинхронного двигателя...

Математическая модель асинхронного двигателя в неподвижной системе координат с переменными iR-fR.

Окончательно уравнения (24) ÷ (27) в статорной системе координат примет следующий вид

Структурная схема для уравнения(45)

Математическая модель асинхронного двигателя во...

Структурная схема для уравнений (3) и (4): Структурная схема для уравнения (5) и (6): Рассмотрим трехфазный асинхронный короткозамкнутый двигатель со следующими номинальными данными и параметрами схемы замещения [4].

Математическая модель асинхронного двигателя...

Рис. 4. Структурная схема проекции потокосцепления статора на ось +j. Структурная схема для реализации уравнения (5) дана на рис. 5: Рис. 5. Математическая модель электромагнитного момента m.

Математическая модель САР скорости линейного асинхронного...

Уравнения преобразования, в соответствии с [3], имеют следующий вид

% Математическая модель САР скорости ЛАД с укладкой статорной обмотки классическим

Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения.

Задать вопрос