Интенсификации роста стартовых культур в технологии производства сырокопченых колбас | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Авторы: , ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №5 (64) апрель-2 2014 г.

Дата публикации: 19.04.2014

Статья просмотрена: 322 раза

Библиографическое описание:

Акопян, К. В. Интенсификации роста стартовых культур в технологии производства сырокопченых колбас / К. В. Акопян, Е. Г. Горина, К. Н. Аксенова. — Текст : непосредственный // Молодой ученый. — 2014. — № 5 (64). — С. 30-32. — URL: https://moluch.ru/archive/64/10437/ (дата обращения: 16.01.2025).

При любом уровне экономического развития пищевой отрасли мясные изделия пользуются высоким потребительским спросом. Снижение их себестоимости при гарантированном сохранении стандартного качества — важнейшее условие расширения ассортимента и увеличения объемов выпуска этого вида продукции [1, с. 393]. Одним из реальных путей решения этой задачи в настоящее время является разработка и внедрение новых технологий, ориентированных на обеспечение качества и безопасности мясных продуктов.

Перспективным направлением является реализация биотехнологических методов в мясной промышленности, связанная с созданием новых технологических решений, основанных на эффективном использовании как собственных ферментных систем биологических объектов, так и целенаправленно внесенных микроорганизмов (бактериальных стартовых культур), продуцирующих ферменты, белки, незаменимые аминокислоты и витамины. Многообразие технологических приемов обработки мясного сырья микроорганизмами позволяет вырабатывать готовые продукты высокого качества, обладающих не только функциональными, но и пробиотическими свойствами [2, с. 75].

Многими учёными показана перспективность применения стартовых культур (бактериальных препаратов), состоящих из специально подобранных штаммов микроорганизмов, целенаправленно действующих на сокращение технологического процесса и получения стабильных качественных показателей продукта. [3, с. 37, 4, с. 168]

Как и к любому компоненту, который используется при производстве мясных изделий, к стартовым культурам выдвигаются определенные требования. Стартовые культуры должны быть, прежде всего, безопасными для здоровья. Они должны эффективно действовать в мясном субстрате, придавая изделиям ярко выраженный интенсивный цвет, традиционный вкус и аромат. В результате применения стартовых культур производитель должен получить желаемые изменения в сырокопченых колбасах. Кроме того, использование стартовых культур не должно сокращать сроков хранения готового продукта.

Однако к их недостаткам следует отнести то, что, несмотря на использование стартовых культур для активизации созревания, процесс окисления происходит медленно, так как бактерии медленно расщепляют добавляемый по рецептуре сахар и необходимое по технологии низкое значение pH наступает только через 24 часа, при относительно высоких температурах, что может повлечь за собой прогорание жиров. при этом длительность всего технологического процесса составляет не менее 25 суток, а затраты на производство достаточно велики.

Целью данной работы является создание оптимальных условий для активации стартовых культур при помощи электромагнитной обработки для их быстрого развития и сокращения срока созревания ферментированных колбас.

Использование стартовых культур в производстве ферментированных колбас позволяет сделать производственный процесс быстрее и экономичнее. Основные преимущества применения стартовых культур заключаются в следующем:

-          подавление роста «диких» микроорганизмов;

-          снижение уровня рН;

-          создание оптимальных условий для реакций цветообразования;

-          образование вкусоароматических характеристик;

-          повышение уровня стабильности липидов.

Вместо непредсказуемой микрофлоры «диких» микроорганизмов в сырокопченых колбасах должна доминировать определенная флора желательных микроорганизмов. Одной из существенных характеристик стартовых культур является способность производить молочную кислоту из углеводов и таким образом способствовать процессу снижения уровня рН. Образующие кислоту бактерии подразделяются на две группы: «гомоферментативные» и «гетероферментативные». [5, с. 76, 6, с. 48]

«Гетероферментативные» бактерии разлагают сахара не только на желаемую молочную кислоту, но также и на нежелательные метаболиты — уксусную кислоту, пропионовую кислоту, спирт, С02 и др.

«Гомоферментативные» бактерии производят из Сахаров только молочную кислоту. Поскольку молочная кислота от природы присутствует в мясе, она является типичной составляющей ферментативных колбас. Стартовые культуры должны содержать «гомоферментативные» бактерии. «Дикие» же микроорганизмы часто способствуют гетероферментативному окислению.

В качестве опытного образца объектами бактериологического исследования служили стартовые культуры фирмы STARMIX «СтартСтарт», которые обеспечивают быстрое образование мягкой молочной кислоты, нежный аромат, твердую консистенцию и выраженный и стабильный цвет посола.

Для определения влияния электромагнитного излучения на стартовые культур был проведен микробиологический анализ по показателям роста микроорганизмов на мясо-пептонном агаре. Используемая среда для первоначального развития микрофлоры по проведенным исследованиям не влияет на органолептические и физико-химические показатели готового продукта. Исходя из этого, ее можно вносить вместе с обработанной культурой на первых этапах составления фарша.

Для предварительной активации мы поместили стартовые культуры в питательную среду и выдержали их в течение 72 часов. После этого обработали электромагнитным полем. Результаты обработки приведены в таблице 1.

Таблица 1

Результаты развития стартовых культур после обработки ЭМП

Время мин

Частота, Гц

Напряжение, В

Количество микроорганизмов КОЕ/г

1

контроль

8,2*106

2

30

25

50

3,3*107

3

60

25

50

4,3*108

4

30

35

75

7,7*108

5

60

35

75

2,9*108

6

30

45

92

7,7*107

7

60

45

92

3,9*109

8

30

100

150

2,0*108

9

60

100

150

1,7*107

10

30

150

50

3,1*108

Как видно из таблицы, при обработки стартовых культур электромагнитным излучением с частотой 45 Гц в течение 60 минут мы получаем интенсивный рост микроорганизмов.

Из обобщенных сведений об изменении равновесия и скорости большинства химических реакций в магнитном поле следует, что взаимодействие магнитного поля с пара и диамагнитными молекулами, составляющими основную массу клетки, характеризуется энергией воздействия магнитного поля. Эта энергия на много порядков меньше энергии теплового движения. Таким образом, можно считать, что магнитное поле не изменяет, а значит, и не нарушает природу химических связей веществ вообще и в биологических системах в частности [7, с. 225].

Магнитное поле оказывает влияние на некоторые физикохи-мические свойства воды находящихся в клетках: поверхностное натяжение, вязкость, электропроводность, диэлектрическую проницаемость, поглощение света. Изменение свойств воды в свою очередь ведет к изменению единой системы воды с молекулами белков, нуклеиновых кислот, полисахаридов, липидов. Установлено, что магнитное поле, изменяя энергию слабых взаимодействий, оказывает влияние на надмолекулярную организацию живых структур. Это приводит к количественным изменениям в химически специфичных реакциях, отдельные из которых протекают с участием ферментов. Магнитные поля имеют разновидности. Некоторые из них активизируют биологические объекты. Основой их является вращающееся электромагнитное поле. [8, с. 43]

Следует отметить, что электромагнитное поле и локальные электромагнитные поля, образующиеся вокруг ферромагнитных частиц, являются переменными и в отличие от постоянных их воздействие на объекты может отличаться.

Колебательное, вращательное и поступательное движение ферромагнитных частиц, а также вращение всего вихревого слоя в целом обеспечивают интенсивное перемешивание обрабатываемого вещества как в микро, так и в макрообъемах. В местах соударения ферромагнитных частиц может возникать давление до тысячи мегапаскаль. В зоне удара создаются условия для протекания таких физических и химических процессов, которые в обычных условиях затруднены или невозможны, деформируется кристаллическая решетка твердых тел, резко увеличивается химическая активность веществ, степень их диссоциации и др. Следовательно, действие вихревого слоя на различные системы может привести к существенному изменению состояния этих систем.

Таким образом, электромагнитная обработка стартовых культур — один из эффективных способов, оказывающих влияние на их активацию. Этот физический метод позволяет в 1,5–2,0 раза ускорить процесс роста и созревание ферментированных колбас.

Введение активированных стартовых культур на первых этапах куттерования позволяет в боле короткий срок понизить рН до необходимых значений в 5,1–5,3. Более быстрое снижение рН важно не только для торможения роста гнилостной микрофлоры, оптимум развития которой находится в диапазоне рН 7,0–7,4, но и оказывает существенное влияние на скорость сушки. Величина рН в интервале, близком к изоэлектрической точке белков мяса (5,1–5,5), создает лучшие условия для снижения водосвязующей способности и соответственно для сушки, является оптимальной для образования нитрозопигментов, ответственных за окраску сырых колбас.

Существенно влияют на изменение состава микрофлоры при созревании колбас антагонистические взаимоотношения между различными микроорганизмами. Многие штаммы молочнокислых бактерий, обладают выраженным антагонизмом в отношении «дикой» микрофлоры фарша.

Микробы-антагонисты обладают значительной солеустойчивостью, что позволяет им активно размножаться в процессе постепенного обезвоживания продукта. В результате быстрого размножения молочнокислые бактерии и микрококки вытесняют грамотрицательные бактерии, аэробные гнилостные бациллы, стафилококки, что существенно сказывается на сроках ферментации колбас и сроках их хранения.

Литература:

1.         Патиева, А. М. Обоснование использования мясного сырья свиней датской селекции для повышения пищевой и биологической ценности мясных изделий [Текст] / А. М. Патиева, С. В. Патиева, В. А. Величко, А. А. Нестеренко // Труды Кубанского государственного аграрного университета, Краснодар: КубГАУ, 2012. — Т. 1. — № 35 — С. 392–405.

2.         Нестеренко, А. А., Использование электромагнитной обработки в технологии производства сырокопченых колбас [Текст] / А. А Нестеренко, А. В. Пономаренко // Вестник Нижегородского государственного инженерно-экономического института. –2013.–№ 6 (25). — С. 74–83.

3.         Нестеренко, А. А. Технология ферментированных колбас с использованием электромагнитного воздействия на мясное сырье и стартовые культуры [Текст] / А. А. Нестеренко // Научный журнал «Новые технологии», Майкоп: МГТУ. 2013. — № 1. — С. 36–39.

4.         Зайцева, Ю. А. Новый подход к производству ветчины [Текст] / Ю. А. Зайцева, А. А. Нестеренко // Молодой ученый. — 2014. — № 4. — С. 167–170.

5.         Нестеренко, А. А. Влияние электромагнитного поля на развитие стартовых культур в технологии производства сырокопченых колбас [Текст] / А. А. Нестеренко // Вестник Мичуринского государственного аграрного университета, Мичуринск, 2013. — № 2. — С. 75–80.

6.         Нестеренко, А. А. Посол мяса и мясопродуктов [Текст] / А. А. Нестеренко, А. С. Каяцкая // Вестник Нижегородского государственного инженерно-экономического института. 2012. — № 8. — С. 46–54.

7.         Нестеренко, А. А. Изучение действия электромагнитного поля низких частот на мясное сырье [Текст] / А. А. Нестеренко, К. В. Акопян // Молодой ученый. — 2014. — № 4. — С. 224–227

8.         Нестеренко, А. А. Электромагнитная обработка мясного сырья в технологии производства сырокопченой колбасы [Текст] / А. А. Нестеренко // Научный журнал «Наука Кубани», Краснодар: Министерства образования и науки Краснодарского края, 2013. — № 1. — С. 41–44.

Основные термины (генерируются автоматически): культура, магнитное поле, микроорганизм, молочная кислота, STARMIX, бактерия, готовый продукт, технологический процесс, электромагнитная обработка, электромагнитное излучение.


Похожие статьи

Применение активации стартовых культур в технологии производства сырокопченых колбас

Применение стартовых культур в технологии сырокопченых колбас

Способ совершенствования технологии производства сырокопченых колбас

Электромагнитная обработка мясного сырья и стартовых культур в технологии производства сырокопченых колбас

Изменение барьерных показателей в процессе созревания сыровяленых колбас

Влияние углеводов на технологический процесс производства и качественные показатели сырокопченых колбас

Использование морковного порошка в качестве пребиотика в технологии производства функциональных колбасных изделий

Применение консорциумов микроорганизмов для обработки мясного сырья в технологии колбасного производства

Устройство для стимуляции роста микрофлоры в технологии сырокопченых колбас

Накопление биогенных аминов при производстве сырокопченых и сыровяленых колбас

Похожие статьи

Применение активации стартовых культур в технологии производства сырокопченых колбас

Применение стартовых культур в технологии сырокопченых колбас

Способ совершенствования технологии производства сырокопченых колбас

Электромагнитная обработка мясного сырья и стартовых культур в технологии производства сырокопченых колбас

Изменение барьерных показателей в процессе созревания сыровяленых колбас

Влияние углеводов на технологический процесс производства и качественные показатели сырокопченых колбас

Использование морковного порошка в качестве пребиотика в технологии производства функциональных колбасных изделий

Применение консорциумов микроорганизмов для обработки мясного сырья в технологии колбасного производства

Устройство для стимуляции роста микрофлоры в технологии сырокопченых колбас

Накопление биогенных аминов при производстве сырокопченых и сыровяленых колбас

Задать вопрос