В статье изучены методы измерения продуктивной влажности почвы. Проведен анализ методов и средств измерения влажности почвы. Раскрыты достоинства и недостатки данных методов измерения. Метрологический подход заключается в контроле параметров, где большое внимание будет уделено сопутствующим параметрам. Объектом исследования являются взятые пробы почв. Предметом изучения являются методы измерения влажности почвы.
Ключевые слова: влажность почвы, измерение, методы измерения, метрология, мониторинг, средства измерения влажности, принцип действия, влагомер.
В аграрной сфере показатель производительности в растениеводстве зависит от качества почвы. Чтобы был высокий урожай, необходимо, чтобы почва была насыщена влагой. Проблема заключается либо в нехватке влажности, либо в переизбытке, что в свою очередь пагубно влияет на растения.
Исследования качества почвы начинаются с контроля пахотного слоя. Контроль позволяет определять время сева семян и сбора урожая. Однако в области точного земледелия трудно оценить показатель влажности, потому что он зависит от правильности применения полученных данных. Данные, предоставленные на анализ, должны обладать достоверностью о состоянии пахотного слоя почвы. Замена ручного труда (применение лабораторного метода) на автоматику тоже ведет к улучшению производительности и сокращению времени на анализ почв. [1]
На данный момент в России исследуют почву традиционным способом, в соответствии с «Методическими указаниями по проведению комплексного агрохимического обследования почв сельскохозяйственных угодий» и «Методическими указаниями по проведению комплексного мониторинга плодородия почв земель сельскохозяйственного назначения». [2,3]
На исследуемом участке определяются точки для проведения измерений, зависящих от макро и микрорельефа местности (склоны, холмы, ложбины) и выкапывается вертикальная выработка. На больших площадях по одной точке на гектар. Площадь и местоположение выбирают приблизительно, что даёт неточный результат. Это заметно при сравнении результатов анализа за несколько лет, так как проба берётся не в том же самом месте, а с погрешностью в десятки метров или более.
Измерения на выбранных участках проводят обычно в весной и летом, во время жизненного цикла растений. Измерения проводят перед посадкой, внесением удобрений и уборкой урожая. Делают это из-за сложности получения и обработки большого количества данных, из-за проблемных участков, сравнивая их с наилучшими (на склоне — верх, середина, низ), из-за малой производительности, сильной изменчивости погодных условий, неоднородности плодородия земельных участков, отсутствия одновременности, равнокачественности и краткосрочности всех работ на участках, с большим количеством исследуемых параметров. Нарушение измерений ведет к искажению результатов. Даже незначительные отклонения во влажности почвы, вызванные неравномерностью полива, приводят к различиям в продуктивности растений. [4]
Во многих сельскохозяйственных производствах применяют современные методы, основанные на автоматизированных системах измерения, компьютерной технике, системе глобального позиционирования (GPS, ГЛОНАС), имеющие большое количество достоинств.
Основными из них являются:
– определение точного местонахождения объекта;
– автоматическая разметка территории;
– возможность визуального отображения длин и площадей объектов на мониторе бортового компьютера;
– ведение пространственной базы данных, полученной информации с привязкой к координатам места;
– автоматический отбор пробы почвы.
Перечисленные показатели являются характеристикой «точного земледелия».
Основным принципом точного земледелия является постоянный мониторинг состояния почвы на выбранном микро-участке поля. Контролируются плотность, твердость, влажность, агрегатный состав, содержание микроорганизмов и микроэлементов в почве, их распределение по всей территории. [5]
Чтобы управлять почвенно-водным режимом необходимо проводить наблюдения и вести базу данных. Для этого существует множество методов и технологий, позволяющих измерять уровень влажности почвы и грунта контактно либо бесконтактно.
Методы определения влажности почвы делятся на контактные и бесконтактные. Контактные в свою очередь делятся на прямые и косвенные, а бесконтактные — на портативные и дистанционные. [6]
Рис. 1. Основные методы измерения влажности почвы
При прямых методах проводят отбор проб на разной глубине, а затем анализируют, полученные результаты. В таких методах разделяют материал на сухое вещество и влагу.
В косвенных методах измерения, по сравнению с прямыми методами, исследуют физические показатели, зависящие от влажности материала или среды. Измеряется величина, показывающая влажность материала. Оценивается изменение свойств почвы. В косвенных методах сначала проводят калибровку, чтобы установить зависимость влажности почвы и измеряемой физической величины. К таким методам относят механические методы, где измеряются изменяющиеся с влажностью механические характеристики твердых материалов. Достоинством косвенных контактных методов является быстрое проведения. [7]
При термостатно-весовом методе производится сушка отобранной почвы, чтобы вес образца достиг равновесия с окружающей средой. Сушка производится до тех пор, пока вес не достигнет минимального значения. На это уходит минимум — 5 часов, максимум — 8 часов. Полученное равновесие является показателем полного удаления влаги. [8]
При экстракционном методе влагу убирают не сушкой, а введением в исследуемый образец водопоглощающей жидкости (диоксан, спирт). После введения исследуется жидкий экстракт, зависящий от влагосодержания: плотности, показателя преломления, температуры кипения или замерзания. [9]
Пиктонометрический метод является «обратным» двум предыдущим. Потому что образец почвы не осушается, а увлажняется, пока не будет превышен порог влагоудержания — объем жидкости, которого нужно достичь для расчета изначальной влажности пробы. [10]
Экстракционный и пиктонометрический методы являются лабораторными и неточными, в отличие от термогравиметрического.
В гигрометрическом методе измеряется разность температур сухого и влажного термометров. Рассматривается ухудшение водопоглощающих материалов из-за увеличения от влаги, находившихся в почве. Образец почвы уменьшается из-за высокого давления, которое фиксируется на шкале «давление», на другой шкале отмечается величина усадки. Величина усадки выше, чем выше влажность исследуемой почвы. Усадка происходит только до степени насыщения почвы водой, равной к полевой. [11]
Электрические методы показывают зависимость влажности и электрических свойств, таких как электропроводность, диэлектрическая проницаемость, диэлектрическая проницаемость буферной промежуточной среды — влагообменника, контактирующего с почвой. Электрические влагомеры бывают одно- и многоуровневыми, измеряя влажность одновременно на нескольких глубинах, переносными с индивидуальным дисплеем или предполагающим стационарную установку и интеграцию в какую-либо систему. [12]
При дистанционных методах фотографируется поверхность Земли без прямого контакта с почвой, а затем измеряются. Осуществляются летательным аппаратами, наземной платформой с установленными на них системами гравитационной регистрации электромагнитных полей и определенной частотой радиоизлучений, с выведением информации в виде графиков, сигналов и кривых спектральной яркости. В зонах с разряженным и низким слоем растительности, влажность четко отображается на снимках. Использование данных методов исследования в аграрном хозяйстве является технически сложным из-за дорогостоящего оборудования. [13]
Метод регистрации теплового (инфракрасного) излучения — это способ исследования инфракрасных сигналов оптического излучения в спектре электромагнитных колебаний почвы различной влажности с помощью экспериментальной установки. Для этого каждую выбранную точку на поверхности предварительно нагретой почвы представляют как центр, из которого испускается инфракрасное излучение во всех направлениях и, к которому поступает инфракрасное излучение из окружающего пространства. [14]
Спутниковый мониторинг — это новая разработка, дорогая и мало испытанная. Продвижения этого метода прогнозируют популярность метода в будущем с помощью сервисов, использующих спутниковое наблюдение. [15]
Эти методы могут применяться стационарными платформами, с самолетов или с околоземной орбиты, как бесконтактно с малого расстояния, так и со большого расстояния.
Таким образом, если опираться на точность измерений, то особого различия в методах нет, погрешность методов колеблется от 2 до 4 %. Если же рассматривать скорость получения результатов, наиболее быстро происходит при электрометрическом методе, но из-за плохого контакта измерителя с почвой, возможны погрешности результатов. Тензометрический метод более точный и доступный по цене, но зависит от температуры. [16]
Электрометрический метод измерения влаги почвы является наиболее выгоден из-за скорости измерения. Электрометрический метод можно проводить в любое время года. Средства, реализующие данный метод, применяются в автоматизированных системах.
Литература:
- Роде А. А. Основы учения о почвенной влаге. Том 1: Водные свойства почв и передвижение почвенной влаги. [Текст] / А. А. Роде. — Л.: Гидрометеоиздат, 1965.- 664 с.
- Методические указания по проведению комплексного агрохимического обследования почв сельскохозяйственных угодий. — М.: ЦИНАО, г. Москва, 1994 г — 95 с.
- Методические указания по проведению комплексного мониторинга плодородия почв земель сельскохозяйственного назначения. — М.: ФГНУ «Росинформагротех», 2003. — 240 с.
- Вадюнина, А. Ф., Корчагина, З. А. Методы исследования физических свойств почв: учебники и учебные пособия для студентов вузов — изд. 3–е, перераб. и доп. — М.: Агропромиздат, 1986. — 416 с.
- Якушев В. П. Информационное обеспечение точного земледелия / В. П. Якушев, В. В. Якушев. — Санкт-Петербург: Изд-во ПИЯФ РАН, 2007. — 384 с.
- Берлинер М. А. Измерения влажности Издание 2: Учебное пособие для вузов / Берлинер М. А. — Л.:Логос, 2004. — 269 с.
- Теории и методы физики почв / под ред. Е. Шеина, Л. Карпачевского. — Москва: Гриф и К, 2007. — 368 с.
- Васильев С. И. Анализ современных электротехнических методов измерения влажности почвы // Научный форум: Технические и физикоматематические науки: сб. ст. по материалам I междунар. науч.-практ. конф. — № 1(1). — М., Изд. «МЦНО», 2016. — С. 49–52.
- Неручев Ю. А., Зотов В. В., Шойтов Ю. С. Скорость звука и флуктуация плотности. // Ультразвук и термодинамические свойства вещества. — 1989.–75 с.
- Попов А. Н. Технология и техническое средство бесконтактного измерения влажности почвы [Текст] / Дисс. канд. техн. наук. — Мичуринск, 2014. — 212 с.
- Толмачева, Н. И. Методы и средства гидрометеорологических измерений (для метеорологов): учебное пособие / Н. И. Толмачева. — Пермь: Изд-во Пермского университета, 2011. — 223 с.
- Берлинер М. А. Электрические измерения, автоматический контроль и регулирование влажности Издание 2: Учебное пособие для вузов / Берлинер М. А. — Л.:Логос, 2006. — 320 с.
- Обиралов А. И. Фотограмметрия и дистанционное зондирование: Учеб. пособие / А. И. Обиралов, А. Н. Лимонов, Л. А. Гаврилова. — М.: КолосС, 2006. — 334 с.
- Попов А. Н. Экспериментальная установка для исследования инфракрасных сигналов почвы различной влажности / А. Н. Попов, А. С. Гордеев. — Вестник Воронежского государственного университета инженерных технологий, 2013. — 96 с.
- Мурзин В. С. Астрофизика космических лучей. Учебное пособие для вузов / Мурзин В. С. — Л.: Логос, 2007. — 486 с.
- ГОСТ 20915−2011. Испытания сельскохозяйственной техники. Методы определения условий испытаний. — Взамен ГОСТ 20915−75; введ. 2013–01–01. — М.: ФГУП «Стандартинформ»: Изд-во стандартов, 2013. — 24 с.