Автор: Васильева Елена Игоревна

Рубрика: Физика

Опубликовано в Молодой учёный №9 (32) сентябрь 2011 г.

Статья просмотрена: 251 раз

Библиографическое описание:

Васильева Е. И. О точном решении задачи движения вязкой сжимаемой жидкости в канале прямоугольной формы // Молодой ученый. — 2011. — №9. — С. 7-10.

Найдено точное решение одной модели движения жидкости в канале прямоугольной формы. Это решение может быть использовано для проверки работоспособности численных алгоритмов.

Постановка задачи о стационарном течении вязкой сжимаемой жидкости в канале прямоугольной формы.

Пусть в области с границами протекает вязкая сжимаемая жидкость. Ширина канала слева, куда втекает жидкость, имеет размер

Рисунок 1 – Область определения задачи

Для вывода уравнений, описывающих течение, примем за основу уравнение движения в напряжениях [1]:

(1)

где - тензор напряжений в жидкости,

- скорость,

- плотность.

Для замыкания (1) запишем определяющее соотношение, представляющее собой зависимость между девиаторами напряжений и деформаций или скоростей деформаций. Вид конечных уравнений будет определяться выбором определяющего соотношения.

Определяющее выражение для имеет следующий вид:

(2)

где

- символ Кронекера,
- динамический коэффициент вязкости,
- объёмный коэффициент вязкости,
р – постоянная, имеющая размерность давления.

Система уравнений движения (1) не содержит давление. Для вязкой сжимаемой жидкости используется дополнительное соотношение (2), в которое давление входит явно.

Давление не связано с деформациями и не совершает работу при движении жидкости. Это не позволяет использовать вариационные принципы аналитической динамики для получения разрешающих уравнений и граничных условий в давлениях. Таким образом, будем рассматривать модель жидкости со специальным определяющим уравнением, связывающим все компоненты напряжений со скоростями деформаций:

(3)

Заметим, что для реальных жидкостей [2] давление намного больше касательных напряжений, а дивергенция скорости мала. Поэтому в уравнении (3) коэффициент , определяющий давление, должен быть намного больше коэффициента вязкости .

Подставив определяющее соотношение в уравнение движения (1), и воспользовавшись определением тензора скоростей деформации в виде , получим уравнения:

(4)

или

(5)

Целью гидродинамического расчёта является нахождение полей скоростей. Плотность и вязкость, входящие в уравнения, считаются известными.

С математической точки зрения, полученные уравнения (4), (5) относятся к классу нелинейных дифференциальных уравнений в частных производных второго порядка. Их нелинейность, обусловленная наличием конвективных членов ускорения, приводит к вычислительным трудностям при решении [3]. Поэтому поставим задачу в таком виде, чтобы можно было сохранить не все конвективные члены и не все члены, учитывающие вязкость.

Аналитический метод решения одно- и двумерной задачи.

Рассмотрим одномерную модель течения вязкой сжимаемой жидкости. Движение жидкости в канале (рисунок 1) установившееся [4], следовательно, все производные по времени равны нулю. Так как модель одномерная, то равны нулю и компоненты скорости по осям Y, Z. Таким образом, исходное уравнение с граничными условиями будет иметь вид:

(6)

где – давление, - объёмная вязкость, - плотность, - длина канала.
Общее решение имеет вид:

(7)

Учитывая граничные условия, находим С1 , С2 и подставляем их в решение. Таким образом, точное решение имеет вид:

(8)

Рисунок 2 – Распределение скорости по длине канала


Рассмотрим двумерную модель течения вязкой сжимаемой жидкости. Предположим, что течение плоское, т.е. . Тогда имеем:

(9)

В результате требуется решить в указанной области (рисунок 1) уравнение движения жидкости (9) со следующими граничными условиями:

Введём параметр в задачу [5]. Строить решение будем в виде суммы ряда по степеням малого параметра :

(10)

Подставляя выражение (10) в (9) и раскрывая скобки, получаем после группировки членов с одинаковыми степенями :

Приравнивая нулю коэффициенты при одинаковых степенях , получаем последовательность линейных краевых задач:

(11)

Решив все уравнения (11) с учётом граничных условий и подставив выражения для , , в (10), получаем искомое решение двумерной задачи. Так, при сохранении трех слагаемых ряда (10) имеем:

(12)


Рисунок 3 – Распределение скорости по ширине канала

В результате получено распределение скорости по ширине канала (рисунок 3). Рассмотренная модельная задача одно- и двумерного течения вязкой сжимаемой жидкости может быть использована для тестирования численной схемы интегрирования уравнений (1).


Литература:
  1. Мейз Дж. Теория и задачи механики сплошных сред [Текст] / Дж.Мейз. – М.: ЛКИ, 2007. – 320 с.

  2. Лойцянский Л.Г. Механика жидкости и газа [Текст] / Л.Г. Лойцянский. – М.: Наука, 1970. – 904 с.

  3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика [Текст] / К.С. Басниев, Н.М. Дмитриев, Г.Д. Розенберг. – Ижевск: Институт компьютерных исследований, 2005. – 544 с.

  4. Биркгоф Г. Гидродинамика [Текст] / Г. Биркгоф. – М.: ИЛ, 1963. – 244 с.

  5. Ван-Дайк М. Методы возмущений в механики жидкости [Текст] / М. Ван-Дайк. - М.: Мир, 1967. – 296 с.

Основные термины (генерируются автоматически): вязкой сжимаемой жидкости, течения вязкой сжимаемой, канале прямоугольной формы, модель течения вязкой, уравнение движения, движения жидкости, движения вязкой сжимаемой, течении вязкой сжимаемой, модели движения жидкости, точное решение, уравнение движения жидкости, двумерной задачи, равны нулю, граничными условиями, двумерного течения вязкой, модель жидкости, движении жидкости, граничных условий, Движение жидкости, Механика жидкости.

Обсуждение

Социальные комментарии Cackle
Задать вопрос