Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Аппроксимация полиномов n степени методом наименьших квадратов

Научный руководитель
Математика
22.04.2018
27062
Поделиться
Аннотация
В данной статье рассмотрено решение проблемы уменьшения суммы квадратов отклонений определённых функций от искомых переменных для полиномиальных уравнений n степени. Приведено подробное решение для уравнений 2 степени, рассматриваемой проблемы. Представлена рабочая программа.
Библиографическое описание
Селютин, А. Д. Аппроксимация полиномов n степени методом наименьших квадратов / А. Д. Селютин. — Текст : непосредственный // Молодой ученый. — 2018. — № 16 (202). — С. 91-96. — URL: https://moluch.ru/archive/202/49571.


Вданной статье рассмотрено решение проблемы уменьшения суммы квадратов отклонений определённых функций от искомых переменных для полиномиальных уравнений n степени. Приведено подробное решение для уравнений 2 степени, рассматриваемой проблемы. Представлена рабочая программа.

Ключевые слова: метод наименьших квадратов, полиномы, полиномиальная регрессия, оконное приложение.

Метод наименьших квадратов — один из методов статистики, имеющий различное практическое применение, в основе которого лежит минимизация суммы квадратов отклонений функций от подлежащих нахождению переменных [4].

История создания.

Одной из основных задач, для решения которой применяется метод наименьших квадратов, является решение систем линейных уравнений, в которых число неизвестных переменных меньше, чем число уравнений. Впервые, метод был применён в 1796 году Фридрихом Гауссом, а в 1805 году Адриен Лежандр опубликовал метод под насущным названием. Метод в дальнейшем был доработан и улучшен [4].

Суть метода.

Допустим, что x — группа nнеизвестных переменных: –набор функций от группы переменных. Целью является подбор таких x, чтобы значения функций были близки к yi [3]. Следовательно, суть метода наименьших квадратов может быть выражена следующей формулой:

Полиномиальная регрессия.

Допустим, что имеется nзначений переменной yи соответствующих переменных x. Необходимо аппроксимировать корреляцию между yи xопределённой функцией f(x,a), где a–известные параметры.

В случае, когда имеется некоторая полиномиальная регрессионная зависимость, например: можно определить параметры системы, учитывая, что а также

Тогда, матричные уравнения будут иметь следующий вид:

Цель работы.

Целью проводимой работы является вывод рабочих формул, минимизирующих сумму квадратов отклонений полиномиальной функции 2 степени, а также создание практической программы, позволяющей находить коэффициенты квадратичной функции и полинома nстепени. Приложение будет являться оконным (будет предусмотрена возможность построения графика по заданным точкам).

Математическое решение проблемы для полиномов 2 степени.

Пусть дан полином второй степени вида:

Пусть задана функция

Тогда: (двойку можно сократить)

В итоге имеем: (Преобразуем к виду (1) см. ниже)

Тогда: (двойку можно сократить)

В итоге имеем: (Преобразуем к виду (2) см. ниже)

Тогда: (двойку можно сократить)

В итоге имеем: (Преобразуемк виду (3) см. ниже)

Составим систему линейных уравнений:

Решим систему. Найдём определитель системы:

Найдём первый частный определитель системы:

Найдём второй частный определитель системы:

Найдём третий частный определитель системы:

, b=, c=.

Решение проблемы для полиномов n степени.

Пусть дан полином вида: , где , а длина отрезка известных нам значений [2].

Необходимо найти такие параметры , чтобы сумма квадратов отклонений от в точках была минимальной, то есть

Задача сводится к решению системы уравнений:

Для решения будем использовать метод Гаусса. Результат решения системы можно наблюдать в работе оконного приложения на языке программирования C#.

Программа

Оконное приложение на языке программирования C# для определения коэффициентов аппроксимации полиномов nстепени.

Основная работа программы приходится на обработчик нажатия кнопки вычислить. Считывается степень полинома. Вычисляется кол-во точек. Далее по заданным точкам заполняется матрица сумм. Далее матрица сумм приводится к такому виду, чтобы на главной диагонали не было нулей. Высчитываются коэффициенты аппроксимации.

Программа позволяет импортировать данные из текстового файла, строить график получившейся функции и сохранять его в формате.png, экспортировать в текстовый файл получившиеся коэффициенты.

Оконные формы приложения:

Рис. 1. Оконное приложение, реализующее метод наименьших квадратов для полиномиальных уравнений n степени.

Рис. 2. Полученный график, аппроксимированной функции.

Программа доступна к использованию по ссылке: https://yadi.sk/d/G9WiaoGe3UYqsJ

Вывод

В ходе работы были выведены рабочие формулы, минимизирующие сумму квадратов отклонений полиномиальной функции второй и n-ой степени, а также была создана практическая программа, позволяющая находить коэффициенты аппроксимируемой функции.

Разработанная программа может применяться при расчётах в эконометрике для наглядного определения зависимостей одних зависимостей от других, также в оценке параметров однофакторной эконометрической модели и других областях науки.

Литература:

  1. Письменный Т.Д — Конспект лекций по высшей математике
  2. NetBeansURL: https://netbeans.org/ (Дата обращения: 5.4.18).
  3. Аппроксимация функций полиномом методом наименьших квадратов.URL: http://www.alexeypetrov.narod.ru/C/sqr_less_about.html (Дата обращения: 6.4.18)
  4. Материал из Википедии — свободной энциклопедии. Метод наименьших квадратов. URL: https://ru.wikipedia.org/wiki/Метод_наименьших_квадратов (Дата обращения: 6.4.18).
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №16 (202) апрель 2018 г.
Скачать часть журнала с этой статьей(стр. 91-96):
Часть 2 (стр. 91-181)
Расположение в файле:
стр. 91стр. 91-96стр. 181
Похожие статьи
Технологии Wolframalpha при изучении элементов прикладной математики студентами бакалавриата
Равномерное приближение таблично-заданных значений гладкой функцией
Метод наименьших квадратов при решении экспериментальных задач по физике
Применение современных компьютерных технологий при прогнозировании методом статистического анализа
Использование эконометрических моделей в целях анализа объективности экзаменационных оценок в ВУЗах
Алгоритм интервального оценивания параметров нелинейных моделей по методу наименьших квадратов без вычисления производных
Логические продолжения некоторого типа задач на построение кривых — окружности, параболы и сплайна
Применение аппарата математической статистики при обработке экспериментальных данных
Математическое приложение MPI для исследования функций
Повышение качества обработки телеметрических данных по функционированию газотранспортной системы на основе использования методов сглаживания временных рядов и методов по фильтрации аномальных значений

Молодой учёный