Аппроксимация полиномов n степени методом наименьших квадратов | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Автор:

Научный руководитель:

Рубрика: Математика

Опубликовано в Молодой учёный №16 (202) апрель 2018 г.

Дата публикации: 22.04.2018

Статья просмотрена: 26085 раз

Библиографическое описание:

Селютин, А. Д. Аппроксимация полиномов n степени методом наименьших квадратов / А. Д. Селютин. — Текст : непосредственный // Молодой ученый. — 2018. — № 16 (202). — С. 91-96. — URL: https://moluch.ru/archive/202/49571/ (дата обращения: 16.01.2025).



Вданной статье рассмотрено решение проблемы уменьшения суммы квадратов отклонений определённых функций от искомых переменных для полиномиальных уравнений n степени. Приведено подробное решение для уравнений 2 степени, рассматриваемой проблемы. Представлена рабочая программа.

Ключевые слова: метод наименьших квадратов, полиномы, полиномиальная регрессия, оконное приложение.

Метод наименьших квадратов — один из методов статистики, имеющий различное практическое применение, в основе которого лежит минимизация суммы квадратов отклонений функций от подлежащих нахождению переменных [4].

История создания.

Одной из основных задач, для решения которой применяется метод наименьших квадратов, является решение систем линейных уравнений, в которых число неизвестных переменных меньше, чем число уравнений. Впервые, метод был применён в 1796 году Фридрихом Гауссом, а в 1805 году Адриен Лежандр опубликовал метод под насущным названием. Метод в дальнейшем был доработан и улучшен [4].

Суть метода.

Допустим, что x — группа nнеизвестных переменных: –набор функций от группы переменных. Целью является подбор таких x, чтобы значения функций были близки к yi [3]. Следовательно, суть метода наименьших квадратов может быть выражена следующей формулой:

Полиномиальная регрессия.

Допустим, что имеется nзначений переменной yи соответствующих переменных x. Необходимо аппроксимировать корреляцию между yи xопределённой функцией f(x,a), где a–известные параметры.

В случае, когда имеется некоторая полиномиальная регрессионная зависимость, например: можно определить параметры системы, учитывая, что а также

Тогда, матричные уравнения будут иметь следующий вид:

Цель работы.

Целью проводимой работы является вывод рабочих формул, минимизирующих сумму квадратов отклонений полиномиальной функции 2 степени, а также создание практической программы, позволяющей находить коэффициенты квадратичной функции и полинома nстепени. Приложение будет являться оконным (будет предусмотрена возможность построения графика по заданным точкам).

Математическое решение проблемы для полиномов 2 степени.

Пусть дан полином второй степени вида:

Пусть задана функция

Тогда: (двойку можно сократить)

В итоге имеем: (Преобразуем к виду (1) см. ниже)

Тогда: (двойку можно сократить)

В итоге имеем: (Преобразуем к виду (2) см. ниже)

Тогда: (двойку можно сократить)

В итоге имеем: (Преобразуемк виду (3) см. ниже)

Составим систему линейных уравнений:

Решим систему. Найдём определитель системы:

Найдём первый частный определитель системы:

Найдём второй частный определитель системы:

Найдём третий частный определитель системы:

, b=, c=.

Решение проблемы для полиномов n степени.

Пусть дан полином вида: , где , а длина отрезка известных нам значений [2].

Необходимо найти такие параметры , чтобы сумма квадратов отклонений от в точках была минимальной, то есть

Задача сводится к решению системы уравнений:

Для решения будем использовать метод Гаусса. Результат решения системы можно наблюдать в работе оконного приложения на языке программирования C#.

Программа

Оконное приложение на языке программирования C# для определения коэффициентов аппроксимации полиномов nстепени.

Основная работа программы приходится на обработчик нажатия кнопки вычислить. Считывается степень полинома. Вычисляется кол-во точек. Далее по заданным точкам заполняется матрица сумм. Далее матрица сумм приводится к такому виду, чтобы на главной диагонали не было нулей. Высчитываются коэффициенты аппроксимации.

Программа позволяет импортировать данные из текстового файла, строить график получившейся функции и сохранять его в формате.png, экспортировать в текстовый файл получившиеся коэффициенты.

Оконные формы приложения:

Рис. 1. Оконное приложение, реализующее метод наименьших квадратов для полиномиальных уравнений n степени.

Рис. 2. Полученный график, аппроксимированной функции.

Программа доступна к использованию по ссылке: https://yadi.sk/d/G9WiaoGe3UYqsJ

Вывод

В ходе работы были выведены рабочие формулы, минимизирующие сумму квадратов отклонений полиномиальной функции второй и n-ой степени, а также была создана практическая программа, позволяющая находить коэффициенты аппроксимируемой функции.

Разработанная программа может применяться при расчётах в эконометрике для наглядного определения зависимостей одних зависимостей от других, также в оценке параметров однофакторной эконометрической модели и других областях науки.

Литература:

  1. Письменный Т.Д — Конспект лекций по высшей математике
  2. NetBeansURL: https://netbeans.org/ (Дата обращения: 5.4.18).
  3. Аппроксимация функций полиномом методом наименьших квадратов.URL: http://www.alexeypetrov.narod.ru/C/sqr_less_about.html (Дата обращения: 6.4.18)
  4. Материал из Википедии — свободной энциклопедии. Метод наименьших квадратов. URL: https://ru.wikipedia.org/wiki/Метод_наименьших_квадратов (Дата обращения: 6.4.18).
Основные термины (генерируются автоматически): оконное приложение, сумма квадратов отклонений, частный определитель системы, вид, квадрат, матрица сумм, полиномиальная регрессия, полиномиальная функция, практическая программа, язык программирования.


Ключевые слова

метод наименьших квадратов, полиномы, полиномиальная регрессия, оконное приложение

Похожие статьи

Алгоритм построения простых чисел

Настоящая статья посвящена выводу формул и разработке алгоритма поиска простых чисел в заданном числовом интервале. Данный алгоритм также применим для проверки факта, является ли данное число простым или нет.

Многочлены от одной переменной над булевым кольцом

В данной статье ставится и решается задача о нахождении корней многочлена над булевым кольцом. Представлен алгоритм решения уравнений и систем уравнений от одной переменной над алгеброй множеств. А также рассмотрено применение изложенного материала п...

Разработка программного метода генерации псевдослучайных чисел

В статье приводится краткое описание процесса проектирования и разработки алгоритма, выдающего псевдослучайные числа.

Численные методы решения систем линейных алгебраических уравнений. Метод Гаусса

В статье рассматривается алгоритм метода Гаусса для решения систем линейных алгебраических уравнений. Выбран язык Maple, как наиболее оптимальный для реализации алгоритма. В статье содержится листинг программного кода.

Линейное программирование

В данной статье рассматривается задача линейного программирования и возможный способ её решения — симплекс метод. Приведены примеры, поясняющие, что такое линейное программирование и симплекс метод.

К вопросу численной реализации краевых задач для системы обыкновенных дифференциальных уравнений четвертого порядка

Рассматривается вопрос о построении приближенного решения линейных обыкновенных дифференциальных уравнений четвертого порядка. Излагаются два метода: метод конечных разностей и дифференциальной прогонки с модификацией матричного варианта.

Асимптотика решения бисингулярной задачи на бесконечной прямой с квадратичной особенностью по времени

В работе построено асимптотическое разложение решения задачи Коши для бисингулярной параболического уравнения, в случае, когда решение соответствующего «вырожденного» уравнения имеет полюс второго порядка по времени в начальной точке. Асимптотика реш...

О разрешимости второй начально-краевой задачи для одномерного псевдопараболического уравнения с дробными производными

В одномерной ограниченной области исследована вторая начально-краевая задача для однородного псевдопараболического уравнения с дробной по времени производной Капуто. Установлены условия однозначной разрешимости рассматриваемой задачи в классе непреры...

Разработка приложения для решения задачи о максимальном потоке

В статье представлена процесс разработки пользовательского приложения, решающего задачу поиска максимального потока алгоритмами Форда-Фалкерсона и Эдмонса-Карпа.

Вероятностный подход к доказательству классических теорем

В статье приводятся задачи теории вероятностей, в решении которых возникают классические константы π и e. Показана вероятностная интерпретация теоремы Дирихле-Вирзинга о приближении действительных чисел алгебраическими числами.

Похожие статьи

Алгоритм построения простых чисел

Настоящая статья посвящена выводу формул и разработке алгоритма поиска простых чисел в заданном числовом интервале. Данный алгоритм также применим для проверки факта, является ли данное число простым или нет.

Многочлены от одной переменной над булевым кольцом

В данной статье ставится и решается задача о нахождении корней многочлена над булевым кольцом. Представлен алгоритм решения уравнений и систем уравнений от одной переменной над алгеброй множеств. А также рассмотрено применение изложенного материала п...

Разработка программного метода генерации псевдослучайных чисел

В статье приводится краткое описание процесса проектирования и разработки алгоритма, выдающего псевдослучайные числа.

Численные методы решения систем линейных алгебраических уравнений. Метод Гаусса

В статье рассматривается алгоритм метода Гаусса для решения систем линейных алгебраических уравнений. Выбран язык Maple, как наиболее оптимальный для реализации алгоритма. В статье содержится листинг программного кода.

Линейное программирование

В данной статье рассматривается задача линейного программирования и возможный способ её решения — симплекс метод. Приведены примеры, поясняющие, что такое линейное программирование и симплекс метод.

К вопросу численной реализации краевых задач для системы обыкновенных дифференциальных уравнений четвертого порядка

Рассматривается вопрос о построении приближенного решения линейных обыкновенных дифференциальных уравнений четвертого порядка. Излагаются два метода: метод конечных разностей и дифференциальной прогонки с модификацией матричного варианта.

Асимптотика решения бисингулярной задачи на бесконечной прямой с квадратичной особенностью по времени

В работе построено асимптотическое разложение решения задачи Коши для бисингулярной параболического уравнения, в случае, когда решение соответствующего «вырожденного» уравнения имеет полюс второго порядка по времени в начальной точке. Асимптотика реш...

О разрешимости второй начально-краевой задачи для одномерного псевдопараболического уравнения с дробными производными

В одномерной ограниченной области исследована вторая начально-краевая задача для однородного псевдопараболического уравнения с дробной по времени производной Капуто. Установлены условия однозначной разрешимости рассматриваемой задачи в классе непреры...

Разработка приложения для решения задачи о максимальном потоке

В статье представлена процесс разработки пользовательского приложения, решающего задачу поиска максимального потока алгоритмами Форда-Фалкерсона и Эдмонса-Карпа.

Вероятностный подход к доказательству классических теорем

В статье приводятся задачи теории вероятностей, в решении которых возникают классические константы π и e. Показана вероятностная интерпретация теоремы Дирихле-Вирзинга о приближении действительных чисел алгебраическими числами.

Задать вопрос