В представленной работе описывается метод получения высокостабильной частоты в рубидиевых стандартах частоты.
Ключевые слова: стандарт частоты, рубидиевая газовая ячейка, дискриминатор атомный
Определение частоты стало наиболее точным измерительным процессом. Поэтому все шире проявляется тенденция сведения измерений самых разнообразных физических величин к измерению частоты. Это в свою очередь предъявляет все более жесткие требования к точности, надежности и удобству измерения частоты и превращает этот процесс в одну из наиболее актуальных физических и технических задач. С этой проблемой тесно связаны точные измерения промежутков времени и разности фаз периодических процессов, необходимые для многих областей науки и техники. Области применения точного измерения частоты: служба времени, навигация, исследование космоса, многие другие области науки. Одним из основных элементов систем измерения частоты является опорный стандарт частоты.
- Квантовые стандарты частоты.
КСЧ представляют собой источники сигналов с эталонными частотами. В этих приборах используются физические принципы, при которых значение и неизменность во времени частоты выходных сигналов определяются стабильностью частот соответствующих энергетическим переходам атомов и молекул различных веществ и их изотопов, таких как Н2, Cs, Rb [1].
По принципам построения квантовые стандарты частоты подразделяются на приборы активного и пассивного типа. Наиболее точными КСЧ активного типа являются водородные генераторы. Примером подобного использования является эталонный стандарт частоты, находящийся в Москве.
Широкое распространение получили стандарты пассивного типа, в которых преобразованная частота кварцевого генератора сравнивается с частотой атомного перехода рабочего вещества в физическом блоке — атомном дискриминаторе (ДА). Среди ДА в настоящее время чаще всего используются цезиевые атомно-лучевые трубки (АЛТ) и дискриминаторы на рубидиевой газовой ячейке. В соответствии с этим общепринято использовать названия атомно-лучевые стандарты (цезиевые или рубидиевые) и квантовые стандарты частоты на рубидиевой газовой ячейке (КСЧ-РГЯ) с оптической накачкой или просто рубидиевые стандарты частоты.
- Дискриминатор атомный.
Атомный дискриминатор представляет из себя одну из главных частей квантового стандарта частоты на рубидиево-газовой ячейке (КСЧ-РГЯ). Работа высокостабильного квантового стандарта частоты основана на принципе подстройки менее стабильной частоты кварцевого генератора по высокостабильной частоте энергетического перехода между двумя состояниями (называемыми сверхтонкими подуровнями атомов рубидия Rb 87) [2].
Остановимся поподробнее на механизме обеспечения и регистрации переходов в атомном дискриминаторе. Схема атомного дискриминатора представлена на рисунке 1.
Рис. 1. Схема накачки и регистрации переходов
Основная задача атомного дискриминатора — обеспечение высокостабильной частоты квантовых переходов, эта частота равна 6834 687 000 Гц (в литературе 6834.7 МГц). Для выделения этой частоты используется метод оптической накачки [3].
- СВЧ-поле.
С выхода ГК сигнал частотой 20 МГц подается на вход преобразователя частоты.
В преобразователе частоты сигнал частотой 20 МГц преобразуется в сигнал 5 МГц. Синусоидальный сигнал частотой 5 МГц поступает на выходной разъём «Выход 5 МГц». Второй сигнал частотой 5 МГц (меандр) поступает с преобразователя частоты на синтезатор частоты.
В синтезаторе частоты сигнал 5 МГц преобразовывается путем некратного преобразования частоты в синусоидальный сигнал 5.313 МГц. Для определения знака и величины расстройки преобразованной частоты ГК относительно частоты сверхтонкого перехода применяется низкочастотная (НЧ) модуляция или манипуляция сигнала СВЧ-поля, облучающего ячейку. Обычно значение частоты НЧ модуляции выбирают в пределах (50…300) Гц. В стандарте частоты она выбрана 78 Гц.
В синтезаторе частоты вырабатывается низкочастотный сигнал 78 Гц (меандр), который используется для осуществления низкочастотной манипуляции СВЧ-поля, для чего сигнал прямоугольной формы вводится в один из каскадов синтезатора частоты, и сигнал 5.313 МГц оказывается промодулирован частотой 78 Гц. Сигнал ошибки несет в себе информацию об отклонении текущей частоты стабилизации от заявленной в документации. Этот же сигнал поступает на синхронный детектор, расположенный в формирователе сигналов управления (ФСУ).
На рисунке 2 приведена характеристика радиочастотного поглощения. Этот рисунок иллюстрирует изменение фазы сигнала ошибки Uсо при расстройке преобразованной частоты ГК относительно резонанса, а также появление сигнала двойной частоты (ДЧ) Uдч и равенство нуля СО при совпадении преобразованной частоты ГК с частотой сверхтонкого перехода атомов Rb87.
Рис. 2. Характеристика радиочастотного поглощения
Из рисунка 2 видно также, что фаза СО несет в себе информацию о знаке, а амплитуда СО о величине расстройки преобразованной частоты ГК, и, таким образом, СО может быть использован для автоматической подстройки частоты ГК.
Сигнал ошибки поступает на вход формирователя сигнала управления (ФСУ), где усиливается избирательным усилителем, настроенным на частоту 78 Гц, и поступает на синхронный детектор (СД). В СД сигнал ошибки преобразуется в постоянное напряжение, которое через интегратор поступает для точной подстройки частоты кварцевого генератора.
Частота кварцевого генератора подстраивается, таким образом, пока частота преобразованного сигнала с умножительного СВЧ-диода точно не совпадает с частотой 6834.7 МГц перехода атомов Rb 87.
Заключение.
На рассмотренном методе получения высокостабильной частоты основаны все рубидиевые стандарты частоты, которые широко используются во многих отраслях науки и технике.
Литература:
- Басевич А. Б. Применение в аппаратуре систем единого времени квантовых стандартов частоты. СПб: ОАО «РИРВ», 2014. 70 с.
- Басевич А. Б. Стандарт частоты: Руководство по эксплуатации. СПб: ОАО «РИРВ», 2005. 61 с.
- Геворкян А. Г. Квантовый стандарт частоты: Эскизный проект. СПб: ОАО «РИРВ», 1990. 47 с.