Использование альтернативных источников энергии в народном хозяйстве – одно из актуальных задач современной энергетики. Геотермальное теплоснабжение – одно из направлений альтернативной энергетики. Термодинамика геотермального теплоснабжения изучена недостаточно хорошо. По степени водоотдачи геотермальные скважины разделяются на высокодебитные (0.02 м3/с и более), среднедебитные (0.005–0.02 м3/с) и малодебитные (менее 0.005 м3/с).
Температура отдельных геотермальных вод колеблется в довольно широких пределах. Поэтому температура как критерий для подразделения подземных вод по их качественным показателям нашла отражение во многих зарубежных и отечественных классификациях. В связи с разносторонним подходом к оценке геотермальных вод по их качественным показателям и значительной условностью при выборе температурного диапазона единой классификации пока нет.
Геотермальные воды по степени минерализации подразделяются [3] на пресные (до 1г/л), слабосолоноватые (1–3г/л), солоноватые (3–5 г/л), сильносолоноватые (5- 10 г/л), слабосоленые (10- 20 г/л) соленые (20- 35 г/л), сильносоленые (35- 50 г/л), слабые рассолы (50- 75 г/л), рассолы (75- 100 г/л) и крепкие рассолы (более100 г/л). Для нужд теплоэнергетики могут быть использованы и высокоминерализованные воды, однако в каждом конкретном случае необходимо находить оптимальные технико-экономические решения.
Подразделение геотермальных вод по химическому признаку основано на классификации Сулина. При этом выделяются четыре типа вод: гидрокарбонатно- натриевый, сульфатно-натриевый, хлормагниевый, хлоркальциевый.
По газовому составу геотермальные воды подразделяются на агрессивные (углекислые и сероводородные) и нейтральные (азотные и метановые).
Химический и газовый состав геотермальных вод, а также минерализация наряду с энергетическим потенциалом должны учитываться при выборе схемы или системы теплоснабжения. На начальной стадии проектирования следует решить следующие вопросы:
- Может ли геотермальная вода с данным химическим и газовым составом, минерализацией непосредственно подаваться в системы отопления горячего и технического водоснабжения?
- Может ли данная геотермальная вода подвергаться догреву?
- Какие устройства могут быть использованы для преобразования энергетического потенциала геотермальных вод?
- Каковы необходимые методы водоподготовки?
По тепловому потенциалу геотермальные воды можно разбить на следующие группы: Перегретые более (100 0 С), Высокотермальные (60–100 0 С), Термальные (40–60 0 С), Слаботермальные (до 40 0 С).
Улучшение технико-экономических показателей теплоэнергетического использования геотермальных вод требует применения различных технических приспособлений и агрегатов, использующих органическое топливо, электроэнергию, химические вещества как в сфере их использования, так и утилизации. К таким агрегатам относятся, например, котельные, теплообменники, артезианские и сетевые насосы, электрокотлы, тепловые насосы, холодильные машины. Поэтому, чтобы оценить получаемую и используемую энергию геотермальных вод, целесообразно воспользоваться общим термодинамическим методом анализа — эксергетическим методом, позволяющим оценить работоспособность энергии в соответствии со вторым началом термодинамики.
Составим эксергетический график Грассмана и энергетический график Сенки для отопления [1] (рис 1). Предположим, что температура пластовой воды на сбросе 65 0 С, температура воды у потребителя 600 С и температура воды при сбросе 30 0 С. Контрольная поверхность I показывает потери в стволе скважины, II- в тепловой сети, III — потери со сбросом, IV — потери при теплообмене в отопительном отделе.
Рис 1. Графики Сенки и Грассмана для геотермального отопления приборов
Анализ графиков показывает, что значительные потери эксергии имеют место и в стволе скважины, и в тепловой сети. Энергетический баланс дает заниженное значение потерь.
Потери эксергии в стволе зависят от разности температур воды в пласте tпл, как правило, от геотермической ступени Г конкретного района и глубины скважины Н и определяется по формуле
Где — глубина залегания слоя с постоянной температурой пород на глубине нейтрального слоя; — температура горных пород на глубине .
При достаточно больших дебитах скважин (около 0,04- 0,07 м3/с) и глубинах , равных 1500- 2500 м,
Рис. 2. Изменение температуры в устьях скважин при различных дебитах: 1- скважина 2- скважина 3- скважина 4- скважина 5- скважина
Разность незначительна (1–20С) и ряд авторов при оценке энергетического потенциала скважин этой величиной пренебрегают. При малых и средних дебитах геотермальных скважин температура воды на устье скважины в значительной мере зависит от фактического дебита и срока ее эксплуатации.
Проведенные в лаборатории геотермии Даг ЭНИН измерения температуры геотермальной воды в устьях скважин (рис 2) в зависимости от [2] эксплуатационного дебита показывают, что при уменьшении дебита значение уменьшается и разность температур велика. Так, при уменьшении дебита скважины от 0,012 до 0,006 м3/с разность температур составила 20 0 С. Точная оценка значения возможна в случае строгого решения сопряженной задачи нестационарного теплообмена потока геотермальной воды в скважине с окружающим ее горным массивом.
Литература:
- Гаджиев А. Г., Курбанов М. К., Султанов Ю. И. и др Проблемы геотермальной энергетики Дагестана. М.: Недра,1980.
- Гаджиев А. Г. Возооновляемая энергия — важный источник топливно-энергетических ресурсов. — Плановое хозяйство, 1981, № 9.
- Дворов И. М. Глубинное тепло Земли. М.: Наука, 1972.