Радиотепловое излучение земных покровов | Статья в сборнике международной научной конференции

Отправьте статью сегодня! Журнал выйдет 4 мая, печатный экземпляр отправим 8 мая.

Опубликовать статью в журнале

Автор:

Рубрика: 2. Электроника, радиотехника и связь

Опубликовано в

III международная научная конференция «Современные тенденции технических наук» (Казань, октябрь 2014)

Дата публикации: 07.10.2014

Статья просмотрена: 518 раз

Библиографическое описание:

Гудков, С. М. Радиотепловое излучение земных покровов / С. М. Гудков. — Текст : непосредственный // Современные тенденции технических наук : материалы III Междунар. науч. конф. (г. Казань, октябрь 2014 г.). — Казань : Бук, 2014. — С. 22-25. — URL: https://moluch.ru/conf/tech/archive/123/6325/ (дата обращения: 26.04.2024).

Собственное тепловое излучение сред определяется видом и строением молекул вещества, объемными неоднородностями плотности и неровностями поверхности, присутствием примесей веществ и термодинамической температурой. Интенсивность теплового излучения сред зависит от характеристик приемной аппаратуры: длина волны и полоса частот, вид поляризации и частотно-пространственные характеристики антенны, ориентация электрической оси антенны относительно нормали к излучающей поверхности.

Электрофизические характеристики типовых земных покровов.

«Комбинированные» модели атмосферы были получены для среднемесячных условий января и июля наφ= 45, 60 и 75° с.ш. и отражены в виде отдельных таблиц для широт; φ = 45 и 60° — до высоты 45 км, и для φ= 75° — до высоты 30 км.

Радиояркостные характеристики фоновых покровов определяются геометрическими и электрофизическими параметрами: комплексной диэлектрической проницаемостью поверхностного слоя покрова, которая для открытых почвогрунтов зависит от относительной объемной влажности почвыq, и определяется плотностью сухого грунта ρc, среднеквадратичным тангенсом угла наклона неровностей γ.

В простейшем случае излучения изотермичной и однородной средой коэффициент излучения χ полностью определяется ее комплексной диэлектрической проницаемостью ε=εʹ+ʺ и описывается через коэффициенты отражения ФренеляR

(1.1)

где θ — угол приема излучения.

В таблице 1 исходные данные для оценки параметров типовых покровов приведены как значения диэлектрической проницаемости для природных и антропологических образований в миллиметровом диапазоне волн.

Таблица 1

Электрофизические и геометрические параметры покровов

Вид покрова

λ, мм

ε=εʹ+ʺ

γ

Бетон

8,6

5,5 — i0,5

0,037

3,3

5,55 — i0,36

Песчаный грунт:

pc= 1,4 г/см3;q= 0,1

8,6

4 — il,l

0,1

3,3

3,4 — i0,7

Глинистый грунт:

pc = 1,8 г/см3, q = 0,1

8,6

4,8 — il,2

0,1

3,3

4,1 — i0,77

Пресная вода

8,6

16,1 — i27,3

0

3,3

6,8 — i11,9

Поскольку приεʺ «1 коэффициент излучения определяется значением εʹ покрова, то по своим излучательным свойствам, все покровы можно условно разделить на три группы:

покровы с εʹ ≤ 3(соответственно χ ≤ 0,93при θ = 0°): грунты, песок, лед, асфальт;

бетон с εʹ = 5…5,5(соответственно χ = 0,84…0,855 при θ = 0°);

пресная вода, имеющая, в отличие от вышеперечисленных покровов, существенно выраженную спектральную зависимость εот λ и εʺ, соизмеримую с εʹ, при этом ее коэффициент излучения приθ = 0° имеет значения 0,46 при λ = 8,6 мм; при 0,6 — λ = 3,3 мм, т. е. заметно меньше, чем у бетона, льда и почвогрунтов.

Рассмотренные покровы представляют собой достаточно однородные среды, поскольку коэффициент затухания миллиметровых волн в этих средах весьма высок (выше 30 дБ/м), вследствие чего интенсивность излучения определяется параметрами приповерхностного слоя.

Эффективная температура земных покровов с учетом состояния атмосферы.

Эффективная температура (Тэфф) земных покровов без растительности в ММ-диапазоне волн складывается из двух составляющих, характеризующих интенсивности собственного излучения покрова и атмосферного излучения. Поэтому Тэфф почвогрунтов без растительности зависит от профиля рельефа поверхности, характера ее неровностей, диэлектрической проницаемости почвы, атмосферных условий, отличающихся большим разнообразием. При разработке модели излучательных свойств открытых почвогрунтов в миллиметровом диапазоне волн были приняты следующие допущения.

1. Рассматривались однородные, в среднем плоские горизонтальные участки поверхности без регулярного рельефа, покрытые хаотическими неровностями, как с горизонтальной, так и с наклонной средней плоскостью.

2. Считалось, что радиус корреляции высот неровностей существенно меньше размеров участка, формирующего излученное и отраженное поля.

3. Неровности поверхности являются крупномасштабными по сравнению с длиной волны и рассеяние на них можно описывать в приближении метода касательной плоскости с учетом затенений. Высоты неровностей статистически однородны и изотропны и распределены по нормальному закону.

4. Почва была достаточно однородной и диэлектрическая проницаемость поверхностного слоя не зависела от координат. Допускалось также, что почва была двухкомпонентной и состояла из сухого грунта и жидкой пресной воды.

Эффективная температура шероховатой поверхности Тэфф на горизонтальной (h) и вертикальной (v) поляризациях с учетом допущений 1–5 определяется формулой

(1.2)

где  — коэффициент излучения поверхности с хаотическими неровностями ( — отношение потока излучения, рассеиваемого поверхностью, к потоку, падающему на неё) при горизонтальной и вертикальной поляризациях; Тz — термодинамическая температура земной поверхности в К;  — яркостная температура атмосферного излучения, рассеянного поверхностью покрова в направлении зенитного угла θ*.

Яркостная температура отраженного излучения и  могут быть найдены из соотношений:

(1.3)

(1.4)

где  — яркостная температура нисходящего излучения неба; I — компоненты рассеяния, просуммированные по двум ортогональным поляризациям падающего излучения при фиксированной поляризации рассеянного излучения (верхние индексы соответствует поляризации рассеянного излучения, нижние — падающего).

Эффективная температура поверхности грунта на ортогональных поляризациях вычислялась для чистой атмосферы на 60° с.ш. в при λ = 2,2; 3,3; 8,6 мм. Расчеты проводились для песчаной почвы с плотностью сухого грунта 1,4 г/см3, относительной объемной влажностьюq = 0,1 при термодинамической температуре земной поверхностиTz = 287 К, соответствующей среднеиюльской температуре.

Рис. 1. Графики зависимости эффективной температуры песчаного грунта от широты при зенитном угле θ* = 45° для длин волн λ = 8,6;3,3 и 2,2 мм на горизонтальной и вертикальной поляризациях излучения

В таблице 1.2 приведены значения эффективных температур песчаного грунта на длинах волн λ = 8,6;3,3 и 2,2 мм для зенитных углов θ*=0° и θ*=45° на горизонтальной и вертикальной поляризациях; плотность сухого грунта 1,4 г/см3; относительная объемная влажность q= 0,1; термодинамическая температура земной поверхности Tz = 287. Диэлектрическая проницаемость бетона ε = 5,5+i0,5на λ = 8,6 мм и ε = 5,55+i0,36на λ = 2,2 и 3,3 мм, среднеквадратичный тангенс угла наклона неровностей .

Таблица 2

Электрофизические и геометрические параметры покровов

Вид покрова

θ*, град

0

45

λ, мм

8,6

3,3

2,2

8,6

3,3

2,2

поляризация

гориз.

гориз.

гориз.

гориз.

вертик.

гориз.

вертик.

гориз.

вертик.

Песчаный грунт:  q= 0,1

54.7

267,0

273,5

231,4

273,7

253,7

280,1

267,1

282,9

Бетон

243,6

251,4

260,6

217,2

267,8

234,4

272,5

252,7

277,5

Водная поверхность

143,3

201,3

235,1

120,0

179,1

186,5

235,0

230,0

261,4

Лес

287

Из таблицы 2 следует, что эффективные температуры указанных покровов на вертикальной поляризации больше, чем на горизонтальной при зенитном угле, отличном от нуля. Из рассмотренных покровов максимальная эффективная температура у песчаного грунта (250...270 К при θ* = 0), у бетона меньше на 10... 15 К и существенно меньше (на несколько десятков К) — у гладкой поверхности воды. Эти закономерности подтверждены экспериментами.

Экспериментальные исследования, выполненные при длинах волн 2,2 и 8,6 мм, показали, что по своим излучательным свойствам растительные покровы близки к абсолютно черным телам и при решении многих прикладных задач могут быть использованы в качестве эталонных излучателей.

Результаты исследований фоновых характеристик покровов северного полушария. Эффективные температуры земных покровов существенно зависят как от электрофизических и геометрических свойств покрова, так и от термодинамической температуры поверхности Tz и углового спектра яркостной температуры неба Тb.

На рисунке 2 приведены зависимости эффективных температур песчаной почвы от местоположения точки наблюдения для зенитных углов θ* = 0. Видно, что с перемещением точки наблюдения на верхние широты эффективная температура грунта монотонно спадает на 15...30 К. Максимальные значения эффективных температур соответствуют длине волны 2,2 мм на вертикальной поляризации, минимальные — λ = 8,6 мм — на горизонтальной поляризации. Медленнее всего меняется с широтой эффективная температура грунта при λ = 8,6 мм на горизонтальной поляризации.

Рис. 2. Графики зависимости эффективной температуры песчаного грунта от широты при зенитном угле θ* = 0° для длин волн λ = 8,6; 3,3 и 2,2 мм (сплошная линия — горизонтальная поляризация, штриховая линия — вертикальная поляризация)

Таким образом, интенсивность радиотеплового излучения земных покровов определяется, в основном, диэлектрическими свойствами покровов, видом поляризации и углом приема излучения. Причем при зенитном угле 0° она близка их термодинамической температуре, а при вертикальной поляризации находится в диапазоне углов до 60°, Наименьшей эффективной температурой обладают водные поверхности.

Литература:

1.     Голунов B. A., Зражевский А. Ю., Розанов Б. А. и др. Пассивная радиолокация на миллиметровых волнах. // Вопросы перспективной радиолокации. Коллективная монография. Под ред. А. В. Соколова. — М.: Радиотеника, 2003, с. 393–463.

2.     Андреев Г. А.. Черная Л. Ф. Интенсивности миллиметровых волн, рассеянных хаотическими поверхностями. — Радиотехника и элекроника, 1981, т. 6, № 6, c. 1198–1206.

3.     Кислов В. Я., Залогин И. И., Мясин Е. А. — Радиотехника и электроника, 1979 т. 24, № 6, с. 1118.

4.     Исхаков И. А., Аганбекян К. А., Зражевский А. Ю. Поглощение и излучение безоблачной атмосферы Земли в миллиметровом диапазоне волн. // Препринт № 4(307). -М.: ИРЭ АН СССР, 1981.

Основные термины (генерируются автоматически): вертикальная поляризация, песчаный грунт, зенитный угол, покров, термодинамическая температура, эффективная температура, длина волн, сухой грунт, горизонтальная поляризация, яркостная температура.

Похожие статьи

Исследование влияния погодных условий на параметры работы...

‒ способа монтажа; ‒ азимута и угла наклона СМ. При проектировании и эксплуатации АСЭ

В настоящей работе исследовано влияние погодных условий (пасмурности, температуры

Неустойчивый снежный покров в основном образуются в третей декаде ноября и до конца...

Коралловые рифы и изменение климата на планете Земля

‒ значительное повышение температуры мирового океана, особенно во время Эль-Ниньо (колебание температуры поверхностного слоя воды в экваториальной части Тихого океана, имеющее заметное влияние на климат [1]). Если температура будет подниматься, любой...

Ключевые слова: термостабилизация грунта; температурные...

‒ управление температурным режимом грунта, обеспечивающим стабилизацию температур грунта в заданном объеме (обратная задача). Для решения этих задач необходима математическая модель, описывающая процессы термодинамической системы...

Спектральные индексы для оценки пожарной опасности лесов по...

(2012)), который позволяет определить сухость растительного покрова, что важно для определения предпожарного стрессового состояния насаждений.

Когда температура у поверхности земли становится суше, то растительность испаряет меньше воды, а, когда...

Исследования ветроколес с вертикальной осью вращения

Таким образом, коэффициенты использования энергии ветра вертикально-осевых ВЭУ и горизонтально-осевых пропеллерных ВЭУ достаточно близки [2].

Тенденции развития вертикально-осевых ВЭУ. Современную волну интереса к вертикально-осевым...

Пути повышения эффективности систем скрытной радиолокации

Необходимость поляризационной обработки сигналов очевидна из физических соображений, так как поляризация отраженной волны определяется как

Рис. 1. ДВКФ сигнала опорного канала с сигналами целевых каналов горизонтальной и вертикальной поляризациями: а)...

Методика улучшения долговечности бетонов в условиях сухого...

Высокие температуры воздуха и интенсивная солнечная радиация в сочетании с ветрами вызывают быстрое испарение влаги из бетонной смеси

В связи с этим необходимо различать понятия сухой жаркий климат и сухая жаркая погода. В условиях сухого жаркого климата...

Повышение контраста малоконтрастных изображений объектов...

Распределение СКО по длинам волн λi, показывает изменение количества информации об объекте

Рис. 3. Угол зрения камеры 10о. Как видно объекты не превратились в точечную цель даже

Спектральный диапазон, мкм. 7,5–14. Эквивалентная шуму разность температур, K.

Характеристика изменения климата в Самаре: случайность или...

Погоду можно описать давлением, температурой и влажностью воздуха, силой и направлением ветра, облачностью, атмосферными осадками, дальностью видимости

5) Посмотрев в окно, я выяснял наличие облачности на улице — ясно, облачно или пасмурно и какого вида облака.

Похожие статьи

Исследование влияния погодных условий на параметры работы...

‒ способа монтажа; ‒ азимута и угла наклона СМ. При проектировании и эксплуатации АСЭ

В настоящей работе исследовано влияние погодных условий (пасмурности, температуры

Неустойчивый снежный покров в основном образуются в третей декаде ноября и до конца...

Коралловые рифы и изменение климата на планете Земля

‒ значительное повышение температуры мирового океана, особенно во время Эль-Ниньо (колебание температуры поверхностного слоя воды в экваториальной части Тихого океана, имеющее заметное влияние на климат [1]). Если температура будет подниматься, любой...

Ключевые слова: термостабилизация грунта; температурные...

‒ управление температурным режимом грунта, обеспечивающим стабилизацию температур грунта в заданном объеме (обратная задача). Для решения этих задач необходима математическая модель, описывающая процессы термодинамической системы...

Спектральные индексы для оценки пожарной опасности лесов по...

(2012)), который позволяет определить сухость растительного покрова, что важно для определения предпожарного стрессового состояния насаждений.

Когда температура у поверхности земли становится суше, то растительность испаряет меньше воды, а, когда...

Исследования ветроколес с вертикальной осью вращения

Таким образом, коэффициенты использования энергии ветра вертикально-осевых ВЭУ и горизонтально-осевых пропеллерных ВЭУ достаточно близки [2].

Тенденции развития вертикально-осевых ВЭУ. Современную волну интереса к вертикально-осевым...

Пути повышения эффективности систем скрытной радиолокации

Необходимость поляризационной обработки сигналов очевидна из физических соображений, так как поляризация отраженной волны определяется как

Рис. 1. ДВКФ сигнала опорного канала с сигналами целевых каналов горизонтальной и вертикальной поляризациями: а)...

Методика улучшения долговечности бетонов в условиях сухого...

Высокие температуры воздуха и интенсивная солнечная радиация в сочетании с ветрами вызывают быстрое испарение влаги из бетонной смеси

В связи с этим необходимо различать понятия сухой жаркий климат и сухая жаркая погода. В условиях сухого жаркого климата...

Повышение контраста малоконтрастных изображений объектов...

Распределение СКО по длинам волн λi, показывает изменение количества информации об объекте

Рис. 3. Угол зрения камеры 10о. Как видно объекты не превратились в точечную цель даже

Спектральный диапазон, мкм. 7,5–14. Эквивалентная шуму разность температур, K.

Характеристика изменения климата в Самаре: случайность или...

Погоду можно описать давлением, температурой и влажностью воздуха, силой и направлением ветра, облачностью, атмосферными осадками, дальностью видимости

5) Посмотрев в окно, я выяснял наличие облачности на улице — ясно, облачно или пасмурно и какого вида облака.