Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Определение параметров привода с упругими связями

Технические науки
04.08.2014
169
Поделиться
Аннотация
Решением задачи идентификации определяются параметры привода с упругими связями. Дается методика построения динамической модели сложной колебательной управляемой модели. Определяются коэффициенты жесткости и демпфирования привода.
Библиографическое описание
Гарькин, И. Н. Определение параметров привода с упругими связями / И. Н. Гарькин, И. А. Гарькина, А. М. Данилов. — Текст : непосредственный // Молодой ученый. — 2014. — № 12 (71). — С. 69-71. — URL: https://moluch.ru/archive/71/12285.

Решением задачи идентификации определяются параметры привода с упругими связями. Дается методика построения динамической модели сложной колебательной управляемой модели. Определяются коэффициенты жесткости и демпфирования привода.

Ключевые слова: объекты на подвижном основании, управление, моделирование, синтез, оптимизация упруго-вязких связей.

Во многих практических случаях определение параметров динамической системы, в том числе и параметров привода представляет значительные трудности. Ниже предлагается комбинированный способ определения параметров сложных колебательных систем, в основе которого лежит сравнение операторов системы, полученных по результатам нормальной эксплуатации и решением задач идентификации в узком смысле (по заданной динамической модели).

Решение задач идентификации предполагает нахождение приближенного оператора в системе по синхронным измерениям входной и выходной величин в процессе нормальной эксплуатации. Но при этом имеет место неоднозначность динамической модели системы, что не позволяет при необходимости осуществить ее доработку, то есть решить задачу ее синтеза. В связи с этим представляется целесообразным решение одновременно с общей задачей идентификации задачи идентификации в узком смысле.

Предлагается следующая методика построения динамической           модели объекта:

-        определение спектрального состава ошибки системы по результатам нормальной эксплуатации (в том числе, вибрационной карты конструктивных элементов);

-        определение собственных частот колебаний конструктивных элементов объекта на основе поверочных расчетов на жесткость, проведенных на этапе проектирования;

-        выделение подсистем объекта, собственные частоты которых лежат в спектральном диапазоне ошибки;

-        построение динамической модели.

Влияние конструктивных элементов на точность управления, особенно по скорости, требует значительных усилий для систем, работающих в области резонансных частот. Поэтому многое определяется интуицией проектировщика в процессе настройки системы управления [1…5].

Для иллюстрации определим параметры упругих связей привода системы, динамическая модель которой приводится к случаю стабилизации объекта на подвижном основании.

Линеаризованные уравнения движения системы в форме Лагранжа имеют вид:

,

,

,

.

Добавив уравнение усилителя системы стабилизации

к системе уравнений, получим замкнутую систему уравнений движения.

Приняты обозначения:

- абсолютный угол поворота платформы,

- угол поворота ротора двигателя относительно платформы,

 — угол поворота объекта относительно платформы,

 — декартовы координаты точки A платформы (лежит на оси симметрии),

- масса всей системы,

 — расстояние от центра тяжести системы до точки A,

- коэффициенты жесткости и демпфирования нитей соответственно,

 -коэффициенты жесткости и демпфирования привода соответственно,

 — длины нитей соответственно натуральная и в положении равновесия,

- моменты инерции соответственно всей системы относительно оси, проходящей через ее центр тяжести: объекта относительно оси вращения и ротора двигателя с приведенными к нему моментами инерции элементов редуктора;

 — крутизна моментной характеристики двигателя,

- коэффициент индуктивного сопротивления двигателя,

- соответственно коэффициент усиления и постоянная времени усилителя,

 — передаточное отношение редуктора.

Проиллюстрируем решение задачи идентификации привода при известных параметрах привода: ; м, кг/м, , , , =1,53, , , , , , , , . При значениях параметров ,  система уравнений с хорошей точностью описывает работу привода. При этом в качестве входной величины принимается угловая скорость ротора двигателя, приведенная к выходному валу редуктора , а выходной — абсолютная угловая скорость объекта. Колебания объекта на собственной частоте  оказывает существенное влияние на ошибку системы стабилизации по скорости. Увеличение коэффициентов жесткости и демпфирования привода (в реализуемых пределах) существенно уменьшает влияние упругости привода на ошибку системы.

Предложенная методика легко адаптируется к исследованию подъемно-транспортных средств.

Литература:

1.                 Будылина Е. А., Гарькина И. А., Данилов А. М., Махонин А. С. Основные принципы проектирования сложных технических систем в приложениях / Молодой ученый. — № 5. 2013. –С.42–45.

2.                 Гарькина И. А., Данилов А. М., Домке Э. Р. Промышленные приложения системных методологий, теорий идентификации и управления / Вестник МАДИ. — 2009. — № 2(17). — С.77–82.

3.                 Будылина Е. А., Гарькина И. А., Данилов А. М. Моделирование с позиций управления в технических системах / Региональная архитектура и строительство. –2013. — № 2 (16). — С. 138–142.

4.                 Гарькина И. А., Данилов А. М. Управление в сложных технических системах: методологические принципы управления / Региональная архитектура и строительство. –2012. — № 1 (12). — С.39–43.

5.                 Будылина Е. А.,Гарькина И. А., Данилов А. М. Приближенные методы декомпозиции при настройке имитаторов динамических систем / Региональная архитектура и строительство. — 2013. — № 3(17). — C. 150–156.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №12 (71) август-1 2014 г.
Скачать часть журнала с этой статьей(стр. 69-71):
Часть 1 (cтр. 1 - 127)
Расположение в файле:
стр. 1стр. 69-71стр. 127
Похожие статьи
Методические погрешности параметрической идентификации динамической системы по данным нормальной эксплуатации
Линейные математические модели, учет неопределенностей
Параметрическая идентификация линеаризованных уравнений продольного движения
Структуризация целостной эргатической системы
Приложение последовательного регрессионного метода к идентификации одного класса динамических систем
Синтез регулятора системы управления электроприводами канала наведения по горизонту платформы стабилизированной
Математическое описание объектов управления
Параметры распределения управляющих воздействий оператора в эргатической системе
Определение обобщенной частотной характеристики эргатической системы по данным нормальной эксплуатации
Аналитическое описание оценки оператором динамических характеристик объекта

Молодой учёный