Поляризационные процессы в неоднородных диэлектриках лежат в основе многих явлений, происходящих в изоляционной системе высоковольтных трансформаторов и позволяющих оценивать их состояние и срок службы. Вследствие применения электроизоляционных материалов с различными диэлектрическим свойствами и наличия включений изоляция высоковольтного оборудования имеет неоднородную структуру. У силовых трансформаторов неоднородность образуется за счет чередующихся слоев твердой (электротехнический картон) и жидкой (трансформаторное масло) изоляции, газонаполненных сферических включений и др. [1, с. 17].
Рассмотрим более подробно, как изменяется внешнее электрическое поле в диэлектриках с неоднородной структурой.
1. Электрическое поле в двухслойном диэлектрике в случае отсутствия токов проводимости.
Поместим двухслойный диэлектрик между обкладками плоского конденсатора. Введем обозначения: толщина первого слоя диэлектрика , диэлектрическая проницаемость , второго слоя соответственно и . Будем рассматривать идеальный случай, когда ток проводимости отсутствует и проводимости слоев диэлектрика равны нулю .
Зарядим конденсатор, подключив к его обкладкам источник постоянного напряжения . На обкладках конденсатора появятся заряды противоположных знаков (рис.1), которые создадут электрическое поле , где – расстояние между обкладками конденсатора.
Диэлектрик, находясь в электрическом поле, созданном обкладками конденсатора, поляризуется и на его границах появляются связанные заряды. Эти заряды создают собственное электрическое поле, которое направлено противоположно внешнему полю и поэтому должно его ослаблять. Вычислим электрические поля и в слоях диэлектрика.
Так как разность потенциалов на границах первого слоя диэлектрика , второго слоя диэлектрика , а разность потенциалов между обкладками конденсатора , то
(1) |
Величина вектора электрического смещения не зависит от среды, в которой создается электрическое поле, поэтому , следовательно:
(2) |
Решая систему уравнений (1) и (2), получим выражения для электрических полей в слоях диэлектрика:
(3) |
Таким образом, электрические поля в слоях диэлектрика зависят от толщины слоев и их диэлектрических проницаемостей.
Рассмотрим частный случай, когда и уравнения (3) переходят в (4):
(4) |
Если между слоями электротехнического картона () находится тонкий слой трансформаторного масла () [1, с.18], то напряженность электрического поля в масле , то есть в тонкой прослойке масла электрическое поле увеличивается в 1,45 раза. Если же слои электротехнического картона разделены тонкой воздушной прослойкой (), то напряженность электрического поля в воздухе , то есть увеличивается в 4 раза.
2. Электрическое поле в двухслойном диэлектрике при наличии токов проводимости.
Перейдем от идеального случая к реальному, когда слои диэлектрика обладают удельными проводимостями и соответственно.
Плотность тока в диэлектрике может быть определена как сумма плотности тока проводимости и плотности тока смещения . Тогда для первого и второго диэлектриков получим соответственно: и .
Так как слои диэлектрика можно рассматривать как соединенные последовательно, то , и, следовательно
(5) |
Для нахождения электрических полей в слоях диэлектрика решим систему уравнений (1) и (5), в результате получим:
Коэффициент определим из начальных условий: при . Тогда и для электрического поля внутри первого слоя диэлектрика получим формулу:
(6) |
Аналогичная формула получается для электрического поля внутри второго слоя диэлектрика:
(7) |
По прошествии большого промежутка времени , когда конденсатор полностью зарядится, для электрических полей в слоях диэлектрика получим следующие формулы [2, с. 13]:
(8) |
Рассмотрим частный случай, когда и уравнения (8) переходят в уравнения (9):
(9) |
Если между слоями электротехнического картона () находится тонкий слой трансформаторного масла () [3, с. 169], то напряженность электрического поля в масле . Таким образом, в соответствии с теоретическим расчетом, электрическое поле в масле может в 10 раз превышать внешнее электрическое поле.
3. Электрическое поле в трехслойном диэлектрике в случае отсутствия токов проводимости.
Перейдем от конденсатора с двухслойным диэлектриком к более сложной ситуации – конденсатору с трехслойным диэлектриком. Толщина третьего слоя диэлектрика , диэлектрическая проницаемость . Сначала рассмотрим простой случай, когда проводимость слоев диэлектрика и ток проводимости отсутствует. Тогда уравнения (1) и (2) преобразуются соответственно в уравнения (10) и (11):
(10) |
|
(11) |
Решая систему уравнений (10) и (11) получим систему уравнений (12):
(12) |
Аналогично ситуации с двухслойным диэлектриком рассмотрим частный случай, когда и , тогда уравнения (12) переходят в уравнения (13):
(13) |
Пусть слой электротехнического картона () находится между тонкими слоями трансформаторного масла (), тогда напряженность электрического поля в слоях масла будет равна . Полученный результат согласуется со значением электрического поля в одиночном тонком слое масла, примыкающем к электротехническому картону.
4. Электрическое поле в трехслойном диэлектрике при наличии токов проводимости.
Перейдем от идеального случая к реальному, когда слои диэлектрика обладают удельными проводимостями , и соответственно. Тогда вместо уравнения (5) получим систему из двух уравнений:
(14) |
Решая систему уравнений (10) и (14) можно получить выражения для электрических полей в трехслойном диэлектрике. Однако решение системы уравнений для трехслойного диэлектрика достаточно сложно и громоздко, поэтому ограничимся рассмотрением частного случая.
Пусть слой электротехнического картона, предназначенный для трансформаторов с масляным наполнением, толщиной [4], диэлектрической проницаемостью и средней проводимостью окружен с двух сторон тонкими слоями трансформаторного масла толщиной , диэлектрической проницаемостью, удельной проводимостью . Решая систему дифференциальных уравнений (10), (14) численно для данного частного случая получим, что напряженность электрического поля в тонких слоях трансформаторного масла , то есть в 10 раз превышает напряженность внешнего электрического поля.
5. Электрическое поле в газонаполненных сферических включениях.
Рассмотрим, как изменяется внешнее электрическое поле внутри газонаполненных сферических включении, например воздушных пора в масляном или бумажном слоях изоляции. На внешних границах поры, вследствие поляризации и ориентации дипольных моментов молекул диэлектрика по направлению внешнего поля, появляются связанные заряды. Эти заряды создают электрическое поле, нормальная составляющая напряженности которого внутри поры будет равна и сонаправлена с внешним полем (рис. 2). Поэтому внутри полости будет существовать электрическое поле .
Так как газ, которым заполнена пора, является диэлектриком, то он тоже будет поляризоваться и на внутренней границе полости появятся связанные заряды (рис. 2). Эти связанные заряды создадут электрическое поле , нормальная составляющая которого направлена против поля . Таким образом, внутри газовой поры будет существовать электрическое поле .
Для нахождения напряженности электрического поля внутри газонаполненного сферического включения воспользуемся формулой (15) [5, с. 151]:
(15) |
где – диэлектрическая проницаемость газа, заполняющего пору, – диэлектрическая проницаемость внешнего диэлектрика.
Пусть сферическая пора, заполненная воздухом с , находится в трансформаторном масле с , тогда напряженность электрического поля в поре составит . Если сферическая пора, заполненная воздухом (), находится в бумажном слое изоляции (), то напряженность электрического поля в воздухе . Таким образом, напряженность электрического поля внутри газонаполненного сферического включения будет больше, чем напряженность внешнего электрического поля.
Вывод. Вопреки распространенному мнению, в соответствии с которым внешнее электрическое поле в диэлектрике ослабляется, в диэлектриках с неоднородной структурой внешнее электрическое поле может усиливаться. В тонких слоях неоднородного диэлектрика, расположенных перпендикулярно к направлению поля, а также в газонаполненных сферических включениях электрическое поле может в несколько раз превышать внешнее. Данное явление негативно сказывается на качестве электроизоляционной системы высоковольтных трансформаторов и может приводить к возникновению таких нежелательных дефектов, как частичные разряды и пробой электроизоляционных промежутков. Образование воздушных пор в бумажной составляющей изоляции может приводить к возникновению частичных разрядов в воздушных промежутках, и, как следствие, разрушению структуры целлюлозы и повреждению изоляции.
Литература:
Вдовико В.П. Частичные разряды в диагностировании высоковольтного оборудования. – Новосибирск: Наука, 2007. – 155 с.
Сканави Г.И. Физика диэлектриков (область слабых полей) Т. 1. –М.: Государственное изд-во Технико-технической литературы, 1949. – 500 с.
Колесов С.Н., Колесов И.С. Материаловедение и технология конструкционных материалов. – М.: Высшая школа, 2004. – 519 с.
ГОСТ 4194-88. Картон электроизоляционный для трансформаторов
и аппаратов с масляным заполнением. Технические условия.
Матвеев А.Н. Электричество и магнетизм. – М.: Высшая школа, 1983. – 463 с.