Компьютерное моделирование движения железнодорожного состава по неровному пути | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 11 мая, печатный экземпляр отправим 15 мая.

Опубликовать статью в журнале

Библиографическое описание:

Селиванов, К. М. Компьютерное моделирование движения железнодорожного состава по неровному пути / К. М. Селиванов, К. О. Боровских, К. И. Жданов. — Текст : непосредственный // Молодой ученый. — 2012. — № 6 (41). — С. 18-24. — URL: https://moluch.ru/archive/41/4909/ (дата обращения: 27.04.2024).

Взаимодействие вагона и железнодорожного пути представляет собой сложную для исследования задачу [1]. В реальных условиях рельсы и колеса имеют неровности на поверхности качения, а также другие технологические особенности, в результате чего, в элементах железнодорожного пути и подвижного состава возникают колебания. Актуальность решения определяется изменениями условий эксплуатации железнодорожного транспорта.

Для решения задач, которые имеют большую размерность и включают нелинейности, целесообразно использовать математическое и компьютерное моделирование. Компьютерное моделирование включает в себя построение математической модели и численный эксперимент, который обходится дешевле, чем натурный эксперимент. Компьютерный эксперимент не отменяет натурный эксперимент, а дополняет его, позволяя получить больше информации об исследуемом процессе, и при этом стоит намного дешевле, чем натурный.

Безопасность движения поездов, ритмичность и рентабельность работы железнодорожного транспорта существенно зависит от конструкции и состояния железнодорожного пути и подвижного состава. Колебания железнодорожного вагона при движении по неровному железнодорожному пути оказывают влияние на состояние пассажиров. Колебания снижают эксплуатационные характеристики вагона, отражаются на сохранности перевозимого груза. Поэтому, одним из основных требований, предъявляемыми к современному транспорту являются повышение плавности хода и улучшение комфортабельности езды [2].

Действие колебаний на организм человека зависит от частоты, амплитуды, продолжительности действия и направления. Влияние знакопеременных ускорений на организм человека, в большей степени, зависит от частоты колебаний. С увеличением частоты, даже небольшие ускорения колебаний могут вызвать неприятные ощущения и даже нанести вред здоровью пассажира.

Железнодорожный путь и подвижный состав, в частности железнодорожный вагон, представляют единую механическую систему. Железнодорожный выгон как колебательную систему, можно представить в виде системы сосредоточенных абсолютно твёрдых инерциальных элементов (масс), соединённых безинерциальными упругими элементами и демпфирующими элементами, обеспечивающими рассеивания энергии при колебаниях. Ограничения, накладываемые на перемещения или скорости элементов системы, называются связями [3]. Связи могут осуществляться направляющими устройствами (рельсовая колея), шарнирными элементами, упругими и диссипативными элементами (пружины, рессоры, резиновые элементы, гасители колебаний).

В отличие от известных подходов, математическую модель объекта запишем в виде системы уравнений Гамильтона [4]. Данный подход показал свои преимущества в моделировании и исследовании прикладных задач [5].

Исследуем влияние неровного пути на водителя и частей железнодорожного состава, в качестве элемента которого был выбран (рис. 1).

Рис. 1. Пассажирский вагон


Расчетная схема железнодорожного вагона состоящего из платформы, двух тележек с буксовым под рессорным подвешиванием, колесных пар, представлена на рис. 2 [6].

Рис. 2. Расчетная схема вагона

Пусть система находится под действием потенциальных и диссипативных сил. Уравнения движения имеют вид системы уравнений Гамильтона:


(1)

(2)

где – гамильтониан системы;

– кинетическая и потенциальная энергия;

– диссипативная функция;

– время;

соответственно векторы обобщённых координат и импульсов.

Векторы обобщенных координат и импульсов имеет следующий вид:

(3)


Для численного интегрирования системы (1) воспользуемся каноническим методом интегрирования алгоритмом вида импульс-координата [7]:

(4)


Кинетическая энергия вагона определяется следующим отношением:

(5)

где: , – масса и момент инерции массы -го тела;

, – обобщенные скорости -го тела.

Потенциальная энергия и диссипативная функция определяются следующими соотношениями:

(6)

и для -элемента приведены в таблице 1.


Таблица 1

Потенциальная энергия и диссипативная функция для -эл.

Номер

элемента

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

где – коэффициент жесткости и – коэффициент демпфирования -эл.

Исходные данные для построения компьютерной модели приведены в таблицах 2,3.



Таблица 2

Массы и моменты инерции элементов вагона

№ элемента i

Название элемента

Масса, m, кг

Момент инерции,

I, кг∙м2

1

Платформа

27140

90000

2

Тележка №1

2791

3000

3

Тележка №2

2791

3000

4

Колесная пара №1

1013

-

5

Колесная пара №2

1013

-

6

Колесная пара №3

1013

-

7

Колесная пара №4

1013

-

Таблица 3

Кинематические и геометрические характеристики элементов вагона

№ элемента i

Параметры демпфирующих элементов

Расстояния между центром масс

Коэффициент жесткости, ,

Коэффициент

вязкости,

Обозначение

Величина, м

1 и 2

0

a1 и a2

1,49

3 и 4

a3 и a4

1,2

5 и 6

a5 и a6

0,91

7 и 8

a7 и a8

0,447

9

a9

9,625

10 и 11

0

b1 и b2

1,49

12 и 13

b3 и b4

1,2

14 и 15

b5 и b6

0,91

16 и 17

b7 и b8

0,447

18

b9

9,625


Траектория движения колеса на стыках железнодорожного пути может быть аппроксимирована следующим выражением:

(7)

где: , – амплитуды неровностей;

– частота воздействия стыков пути на вагон, движущийся со скоростью .

(8)

где: – длина рельса.

При движении транспортного средства на каждую колесную пару неровность пути воздействует кинематически через определенные моменты времени, тогда для перемещений и скоростей точек колес справедливо:

(9)

Определим время запаздывания для положения колесных пар:

(10)


Таблица 4

Характеристики железнодорожного пути и скорость движения вагона

Название

Обозначение

Значение

Длина рельса

L

12,5 м

Амплитуда первой гармоники

amp1

20∙10-3 м

Амплитуда второй гармоники

amp2

10∙10-3 м

Частота воздействия стыков пути на вагон

ω

16,75 с-1

Скорость движения вагона

V

120 км/ч =

33,33 м/с

Время моделирования

t

5000 с.

Шаг интегрирования

τ

0,01


Для оценки плавности хода для характерных точек подрессоренной части найдём среднеквадратичное значение вертикальных виброускорений которые не должны превосходить предельных значений [] ГОСТ 31191.1-2004 и ГОСТ 31248-2004.

(11)

Неравенство (11) позволяет оценивать плавность движения вагона с учётом его конструктивных особенностей, вязких, упругих, массовых характеристик режима движения и состояния железнодорожного пути.

C помощью выражения (7) возможно моделирование различных типов железнодорожных путей. В статье рассматриваются колебания вагона в вертикальной плоскости при движении через единичную неровность и движение по неровному железнодорожному пути.

Исследуем движение вагона через единичную неровность железнодорожного пути. Под единичной неровностью здесь понимаем испорченный участок железнодорожного пути. На рисунке 3 представлены зависимости перемещения и угла поворота платформы железнодорожного вагона от времени, а на рисунке 3 представлена зависимость линейного и углового ускорения платформы железнодорожного вагона от времени.

Рис. 3. Зависимости перемещения и угла поворота платформы

вагона от времени, при скорости движения V=120 км/ч

Рис. 4. Зависимости линейного и углового ускорений платформы

вагона от времени, при скорости движения V=120 км/ч

Были получены среднеквадратические виброускорения платформы железнодорожного вагона движущегося по единичной неровности железнодорожного пути, которые сравним с предельными значениями, взятыми из ГОСТа. Допустимое значение от 0 до 50 дБ. Линейное виброускорение 0,01303 м/c2 = 37,70402 дБ. Угловое ускорение 0,00451 м/c2 = 46,90863 дБ. Исследуем движение вагона по неровному железнодорожному пути, заданному по формуле (9).

На рис. 5 представлены зависимости перемещения и угла поворота платформы железнодорожного вагона от времени, а на рисунке 6 представлена зависимость линейного и углового ускорения платформы железнодорожного вагона от времени.

Рис.5. Зависимости перемещения и угла поворота платформы

вагона от времени, при скорости движения V=120 км/ч

Рис. 6. Зависимости линейного и углового ускорений платформы

вагона от времени, при скорости движения V=120 км/ч

Были получены среднеквадратические виброускорения платформы железнодорожного вагона движущегося по единичной неровности железнодорожного пути, которые сравним с предельными значениями взятыми из ГОСТ. Допустимое значение от 0 до 50 дБ. Линейное виброускорение 0,01423 м/c2 = 36,93650 дБ. Угловое ускорение 0,00453 м/c2 = 46,87177 дБ.

Проведенный анализ движения железнодорожного состава по неровному пути и выполненные компьютерные эксперименты позволяют исследовать устойчивость движения, безопасность и комфортабельность передвижения пассажиров и сохранность перевозимых грузов.

Расчеты позволили проанализировать влияние некачественного железнодорожного пути на характер колебаний и безопасность движения железнодорожного состава.


Литература:
  1. Гарг В.К., Дуккипати Р.В. Динамика подвижного состава. / Под ред. Н.А. Панькина. – М.: Транспорт, 1988.

  2. Благодарный Ю.Ф. Вибрационная безопасность. // Автомобил. пром-сть. – 2004. – № 7. – С. 38-39.

  3. Шестаков А.А., Голечков Ю.И. Устойчивость и безопасность движения транспортных динамических систем. // Наукоемкие технологии. – 2007. – № 7. – С. 56–60.

  4. Морозов Е.А. Каноническое интегрирование гамильтоновых систем. – Екатеринбург; Ижевск: Изд-во Института экономики УРО РАН, 2006. – 196 с.

  5. Селиванов К.М. Канонический метод интегрирования в исследовании движения твердого тела. // Интеллектуальные системы в производстве. 2010. – № 1 Ижевск: Изд-во ИжГТУ С. 67–76.

  6. Аладьев В.З., Богдявичюс М.А. Maple 6: Решение математических, статических и инженерно-технических задач. – М.: Лаб. базовых знаний, 2001. – 850 с.

  7. Ефимов И.Н., Морозов Е.А. Каноническое интегрирование динамических систем. – Екатеринбург–Ижевск: Изд-во Института экономики УрО РАН, 2006. – 198 с.

Основные термины (генерируются автоматически): железнодорожный путь, железнодорожный вагон, единичная неровность, колесная пара, зависимость перемещения, скорость движения, угловое ускорение, элемент, диссипативная функция, Потенциальная энергия.


Похожие статьи

Разработка математической модели грузового вагона...

Начало подвижной базовой (путевой) системы координат поступательно движется вдоль оси пути со скоростью движения экипажа.

Cj – матрица угловой жесткости. Для моделирования упруго-диссипативного элемента боковой опоры применена реологическая модель Кельвина.

Система контроля колесных пар железнодорожных вагонов

Представленное устройство берет на себя решение одного из элементов этой безопасности — контроль текущего состояния железнодорожных колесных пар. Стоит учесть, что колесная пара — одно из самых уязвимых мест в железнодорожном вагоне.

Анализ условий устойчивости стационарного движения редуктора

Численный анализ уравнений движения экипажа показывает, что при больших значениях угловой скорости собственного вращения колеса

Так как массой деформируемой части пренебрегаем, то энергия ускорений вариатора будет такой же, как в твердом случае [3].

Использование преобразования профиля пути с учетом длины...

Определение значений V и S при моделировании движения поезда осуществляется путем численного интегрирования уравнения движения. При этом на каждом шаге интегрирования производится вычисление правой части уравнения по значениям координат скорости и пути...

Развитие скоростного железнодорожного транспорта

Высокоскоростной наземный транспорт в современном понятии — это железнодорожный транспорт, обеспечивающий движение поездов со скоростью более 200 км/ч. Его движение осуществляется либо колесным подвижным составом по рельсовому пути.

Увеличение емкости железнодорожных путей в пунктах...

На железнодорожной станции устройства, такие как железнодорожный путь, системы сигнализации и т. д. располагаются определенным образом с учетом безопасности выполнения работ и требований охраны труда.

Применение режима доплеровского обужения луча в обеспечении...

В процессе движения той или иной железнодорожной единицы под постоянным контролем должны

При этом r'(t) характеризует скорость движения объекта, r'' (t) — его ускорение.

Потенциально достижимая точность определения последних зависит от длительности строба...

Анализ мирового опыта развития высокоскоростного...

Высокоскоростным называется железнодорожный транспорт, обеспечивающий движение поездов со скоростью свыше 250 км/ч по

Путь является наиболее ответственным элементом ВСМ, который в решающей степени определяет безопасность движения.

Похожие статьи

Разработка математической модели грузового вагона...

Начало подвижной базовой (путевой) системы координат поступательно движется вдоль оси пути со скоростью движения экипажа.

Cj – матрица угловой жесткости. Для моделирования упруго-диссипативного элемента боковой опоры применена реологическая модель Кельвина.

Система контроля колесных пар железнодорожных вагонов

Представленное устройство берет на себя решение одного из элементов этой безопасности — контроль текущего состояния железнодорожных колесных пар. Стоит учесть, что колесная пара — одно из самых уязвимых мест в железнодорожном вагоне.

Анализ условий устойчивости стационарного движения редуктора

Численный анализ уравнений движения экипажа показывает, что при больших значениях угловой скорости собственного вращения колеса

Так как массой деформируемой части пренебрегаем, то энергия ускорений вариатора будет такой же, как в твердом случае [3].

Использование преобразования профиля пути с учетом длины...

Определение значений V и S при моделировании движения поезда осуществляется путем численного интегрирования уравнения движения. При этом на каждом шаге интегрирования производится вычисление правой части уравнения по значениям координат скорости и пути...

Развитие скоростного железнодорожного транспорта

Высокоскоростной наземный транспорт в современном понятии — это железнодорожный транспорт, обеспечивающий движение поездов со скоростью более 200 км/ч. Его движение осуществляется либо колесным подвижным составом по рельсовому пути.

Увеличение емкости железнодорожных путей в пунктах...

На железнодорожной станции устройства, такие как железнодорожный путь, системы сигнализации и т. д. располагаются определенным образом с учетом безопасности выполнения работ и требований охраны труда.

Применение режима доплеровского обужения луча в обеспечении...

В процессе движения той или иной железнодорожной единицы под постоянным контролем должны

При этом r'(t) характеризует скорость движения объекта, r'' (t) — его ускорение.

Потенциально достижимая точность определения последних зависит от длительности строба...

Анализ мирового опыта развития высокоскоростного...

Высокоскоростным называется железнодорожный транспорт, обеспечивающий движение поездов со скоростью свыше 250 км/ч по

Путь является наиболее ответственным элементом ВСМ, который в решающей степени определяет безопасность движения.

Задать вопрос