К вопросу решения задачи теории упругого режима при одномерном поступательном движении жидкости с учетом влияния начального градиента | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №47 (285) ноябрь 2019 г.

Дата публикации: 18.10.2019

Статья просмотрена: 33 раза

Библиографическое описание:

Гасанов, И. Р. К вопросу решения задачи теории упругого режима при одномерном поступательном движении жидкости с учетом влияния начального градиента / И. Р. Гасанов. — Текст : непосредственный // Молодой ученый. — 2019. — № 47 (285). — С. 112-114. — URL: https://moluch.ru/archive/285/62791/ (дата обращения: 16.01.2025).



В статье рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при заданном забойном давлении во времени. Задача решается методом усреднений [1, 2].

Ключевые слова: упругий, одномерный, начальный градиент, метод «усреднений», приближенный.

The article deals with a straight-parallel unsteady filtration flow of an elastic liquid at a given bottom-hole pressure in time. The problem is solved by averaging [1, 2].

Keywords: elastic, one-dimensional, initial gradient, «averaging» method, approximate.

Предположим, что пласт одномерный, начало координат расположено у галереи, а ось х направлена по длине пласта.

Согласно предположению соответствующее уравнение имеет вид:

(1)

Применяя метод «усреднений», заменим уравнение (1) приближенным уравнением:

(2)

где

(3)

Граничные условия для данной задачи запишутся в следующей форме:

(4)

(5)

(6)

Кроме того, (7)

Интегрируя выражение (1), получаем:

(8)

При х=0 получаем

При получаем:

(9)

откуда (10)

Подставляя полученные выражения для в (8), получаем:

(11)

находим из условия (7):

Тогда откуда

(12)

Подставляя (12) в (11), получаем:

(13)

Находим

(14)

где

Подставив выражение (14) в (3), получаем дифференциальное уравнение для определения

(15)

Откуда получаем:

Если учесть, что после несложных преобразований получаем:

(16)

Предположим, что значение изменяется незначительно. Тогда, можно предположить, что Для решения дифференциального уравнения (16) умножим обе части уравнения на

Тогда получим:

или

(17)

При тогда из (17) получается известная формула

Таким образом, мы получили формулу для определения границы возмущения при прямолинейно-параллельном движении упругой жидкости.

Литература:

  1. Гусейнов. Некоторые вопросы гидродинамики нефтяного пласта // Азербайджанское государственное издательство. — Баку, 1961. –232с.
  2. Подземная гидравлика: Учебник для вузов /К. С. Басниев, А. М. Власов, И. Н. Кочина, В. М. Максимов. –М.: Недра, 1986. –303с.
Основные термины (генерируются автоматически): дифференциальное уравнение, упругая жидкость.


Похожие статьи

О решении задачи теории упругого режима при движении жидкости с учетом влияния начального градиента при второй фазе распределения давления в пласте

В данной работе рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при второй фазе распределения давления в пласте. Задача решается методом усреднений.

Решение задачи теории упругого режима с учетом влияния начального градиента при второй фазе распределения давления в пласте

В статье рассматривается приближенный метод решения задачи теории упругого режима для одномерного поступательного движения жидкости с предельным градиентом давления для второй фазы. Задача решена методом «усреднений».

О плоскорадиальной неустановившейся фильтрации упругой жидкости с учетом влияния начального градиента

В работе предлагается метод, по которому можно более простым способом решать гидродинамические задачи, связанные с неустановившейся фильтрацией упругой жидкости в пористой среде с учетом влияния начального градиента.

Приближенный метод решения нестационарных задач теории фильтрации с учетом влияния начального градиента в круговом пласте методом усреднений

Задачи проектирования разработки пластов, работающих при упругом режиме, требуют применения теории мало сжимаемой жидкости в пористой среде [1,2]. Точные методы и формулы этой теории довольно сложны. Кроме того, при решении более общих задач возника...

Расчет напряженно-деформированного состояния цилиндрической оболочки по заданным перемещениям

Рассматривается модельная задача о НДС (напряженно-деформированное состояние) цилиндрической оболочки при вертикальной нагрузке, возникающей при заданных жестких смещениях ряда поперечных сечений цилиндра. Подобная задача возникает при проверке состо...

Об определении зависимости между временем релаксации и гидравлическим сопротивлением при фильтрации в пласте неравновесной жидкости

В работе выводятся формулы для определения времени релаксации в зависимости от гидравлического сопротивления и параметра Щелкачева [1, 2, 3].

Об определении гидравлического сопротивления при турбулентном режиме фильтрации флюида в пористой среде

В данной работе делается попытка определения числа Рейнольдса и гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента, а также получена формула скорости в зависимости от эт...

О работе конструкции с основанием под действием динамических нагрузок

В работе предложено решение вертикального и крутильного колебания вязкоупругого полупространства при применении идеи комплексных модулей упругости. Уравнение движения механической системы получено на основе принципа Даламбера.

Продольно-поперечные колебания в системе цилиндрических оболочек, заполненных или погруженных в жидкость

Задача о распространении волн в цилиндрической оболочке, заполненной или погруженной жидкость, имеет важное прикладное значение. Явление распространения волнообразного движения жидкости в упругих цилиндрических оболочках привлекало внимание исследова...

Об определении эффективной вязкости при фильтрации неравновесной жидкости

В статье закон фильтрации берется в более общем виде. Для этого в формуле от нужно использовать кубическое слагаемое. При этом увеличивается точность при обработке индикаторных линий. Однако это необходимо также и для учета неравновесных свойств ...

Похожие статьи

О решении задачи теории упругого режима при движении жидкости с учетом влияния начального градиента при второй фазе распределения давления в пласте

В данной работе рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при второй фазе распределения давления в пласте. Задача решается методом усреднений.

Решение задачи теории упругого режима с учетом влияния начального градиента при второй фазе распределения давления в пласте

В статье рассматривается приближенный метод решения задачи теории упругого режима для одномерного поступательного движения жидкости с предельным градиентом давления для второй фазы. Задача решена методом «усреднений».

О плоскорадиальной неустановившейся фильтрации упругой жидкости с учетом влияния начального градиента

В работе предлагается метод, по которому можно более простым способом решать гидродинамические задачи, связанные с неустановившейся фильтрацией упругой жидкости в пористой среде с учетом влияния начального градиента.

Приближенный метод решения нестационарных задач теории фильтрации с учетом влияния начального градиента в круговом пласте методом усреднений

Задачи проектирования разработки пластов, работающих при упругом режиме, требуют применения теории мало сжимаемой жидкости в пористой среде [1,2]. Точные методы и формулы этой теории довольно сложны. Кроме того, при решении более общих задач возника...

Расчет напряженно-деформированного состояния цилиндрической оболочки по заданным перемещениям

Рассматривается модельная задача о НДС (напряженно-деформированное состояние) цилиндрической оболочки при вертикальной нагрузке, возникающей при заданных жестких смещениях ряда поперечных сечений цилиндра. Подобная задача возникает при проверке состо...

Об определении зависимости между временем релаксации и гидравлическим сопротивлением при фильтрации в пласте неравновесной жидкости

В работе выводятся формулы для определения времени релаксации в зависимости от гидравлического сопротивления и параметра Щелкачева [1, 2, 3].

Об определении гидравлического сопротивления при турбулентном режиме фильтрации флюида в пористой среде

В данной работе делается попытка определения числа Рейнольдса и гидравлического сопротивления при двучленном законе фильтрации углеводородов в пористой среде с учетом влияния начального градиента, а также получена формула скорости в зависимости от эт...

О работе конструкции с основанием под действием динамических нагрузок

В работе предложено решение вертикального и крутильного колебания вязкоупругого полупространства при применении идеи комплексных модулей упругости. Уравнение движения механической системы получено на основе принципа Даламбера.

Продольно-поперечные колебания в системе цилиндрических оболочек, заполненных или погруженных в жидкость

Задача о распространении волн в цилиндрической оболочке, заполненной или погруженной жидкость, имеет важное прикладное значение. Явление распространения волнообразного движения жидкости в упругих цилиндрических оболочках привлекало внимание исследова...

Об определении эффективной вязкости при фильтрации неравновесной жидкости

В статье закон фильтрации берется в более общем виде. Для этого в формуле от нужно использовать кубическое слагаемое. При этом увеличивается точность при обработке индикаторных линий. Однако это необходимо также и для учета неравновесных свойств ...

Задать вопрос