Все возрастающая добыча и последующая переработка полезных ископаемых на горно-обогатительных комбинатах и фабриках оказывает значительное воздействие на окружающую среду. Процесс дробления, измельчения, сушки и транспортирования сухого материала, обжига продуктов окускования концентратов сопровождаются выделением в атмосферу большого количества мелкодисперсной пыли.
Объектом исследования в статье выбран горно-обогатительный комбинат, специализирующийся на производстве калийных удобрений.
При эксплуатации объектов ГОКа в атмосферу выбрасываются как твердые, так и газообразные вещества. В качестве показателей значения для здоровья применяют массовую концентрацию частиц менее 10 мкм (PM10) и частиц диаметром менее 2,5 мкм (PM2,5). Следует также отметить, что в состав частиц PM2,5, которые часто называют мелкодисперсными взвешенными частицами, также входят твердые частицы диаметром менее 1 мкм и ультрадисперсные (нано) частицы диаметром менее 0,1 мкм. Относительные размеры частиц PM10 и PM2.5 представлены в рисунке 1 [1].
Рис. 1. Относительный размер загрязняющих частиц PM10 и PM2,5
Помимо значительного интереса к дисперсности твердых выбросов предприятия необходимо так же изучить компонентный состав, что позволит корректно ценить потенциальное воздействие на окружающую среду и здоровье человека. В таблице 1 представлены основные твердые вещества, которые выбрасываются в атмосферный воздух при технологических процессах горно-обогатительного комбината.
Таблица 1
Загрязняющие твердые вещества горно-обогатительного комбината
Код |
Наименование вещества |
Класс опасности |
0123 |
диЖелезо триоксид (в пересчете на железо (Железа оксид)) |
3 |
0126 |
Калий хлорид |
4 |
0143 |
Марганец и его соединения (в пересчете на марганец (IV) оксид) |
2 |
0150 |
Натрий гидроксид (Натр едкий; сода каустическая) |
- |
0152 |
Натрий хлорид (Поваренная соль) |
3 |
0154 |
Натрий гипохлорит |
- |
0155 |
диНатрий карбонат (натрия карбонат; сода кальцинированная) |
3 |
0203 |
Хром (Хром шестивалентный), в пересчете на хрома (VI) оксид |
1 |
0328 |
Углерод (Сажа) |
3 |
0344 |
Фториды неорганические плохо растворимые |
2 |
0703 |
Бенз/а/пирен |
1 |
2818 |
Лигносульфонаты (аммония, аммония жидкого, натрия порошкообразного) |
- |
2902 |
Взвешенные вещества (недифференцированная по составу пыль) |
3 |
2904 |
Мазутная зола теплоэлектростанций (в пересчете на ванадий) |
2 |
2907 |
Пыль неорганическая, содержащая двуокись кремния более 70 % (динас и др.) |
3 |
2908 |
Пыль неорганическая: 70–20 % SiO2 |
3 |
2909 |
Пыль неорганическая, содержащая двуокись кремния менее 20 % (доломит и др.) |
3 |
2930 |
Пыль абразивная (корунд белый; монокорунд) |
- |
2936 |
Пыль древесная |
- |
2966 |
Пыль крахмала |
4 |
3180 |
Магний дихлорид (магний хлористый) |
- |
Наибольшие вклад твердых веществ в атмосферу происходит при горно-капитальных выработках, а также при технологических процессах основного производства, включающего дробление исходной добытой руды, оттирку руды, измельчение руды до необходимой крупности, обесшламливания, кондиционирования и погрузки товарного концентрата.
На горно-обогатительном комбинате предусмотрены газоочистные сооружения, расположенные в местах с наибольшим пылевыделением. Среди газоочистного оборудования, в основном, используются скрубберы, насадные обеспыливатели, рукавные фильтры. Использование газоочистных установок на комбинате позволяет значительно сократить выброс загрязняющих веществ в атмосферный воздух.
Так, анализируя приведенные данные о компонентном составе твердых выбросов в таблице 1 можно отметить, что в твердых выбросах горно-обогатительного комбината преобладают вещества, отнесенные ко второму и к третьему классу опасности, так называемые «высокоопасные» и «умеренно-опасные вещества», характеризующихся высокой и средней степенью воздействия на окружающую природную среду. Среди некоторых из них: мазутная зола теплоэлектростанций, фториды неорганические плохо растворимые, углерод (сажа), диЖелезо триоксид, взвешенные вещества, пыль неорганическая. Эти вещества имеют канцерогенные свойства. Сажа является аморфным углеродом и продуктом неполного сгорания углеводородов, провоцирует возникновение заболеваний легких, кожных заболеваний, она поступает в атмосферный воздух при работе двигателей автомобилей. ДиЖелезо триоксид — избыточное количество железа в организме чревато общетоксическим действием, особенно уязвимы органы дыхания и пищеварительный тракт. Вдыхание неорганической пыли, содержащей двуокись кремния менее 20 %, может повлечь возникновение силикоза — вида пневмокониоза, обусловленное длительным вдыханием пыли. Эффект суммация вдыхания дифференцированных по составу респирабельных частиц (диаметром <0,5 мкм) способен привести к увеличению рисков для здоровья человека.
Наиболее опасными веществами, приведенными в таблице, являются хром и бенз(а)пирен. Эти вещества относятся к первому классу опасности и оказывают наиболее разрушительное воздействие на окружающую среду и здоровье человека. Бенз(а)пирен –один из наиболее опасных представителей группы полициклических ароматических углеводородов, канцероген (способен накапливаться в организме и оказывать постоянное влияние и мутагенное действие). Биоаккумуляция этого вещества в организме повышает риск возникновения мутаций ближайших поколений. Проникновение вещества может быть различно: путем вдыхания, через кожу, с пищей и водой. Эпидемиологические исследования подтверждают связь между загрязнением воздуха и неблагоприятными последствиями для здоровья населения. Эффекты последствий могут быть представлены как бессимптомным незаметным воздействием, так и преждевременной смертью.
Компонентный состав выбросов в сочетании с дисперсностью оправдывает необходимость контроля содержания таких частиц в атмосферном воздухе жилой зоны. Для оценки влияния на здоровье принимают массовые концентрации PM10 и PM2.5, зафиксированный как законодательством РФ, так и на международном уровне, но критерий мирового масштаба носит рекомендательный характер. Ситуация с мелкодисперсными частицами PM1 обстоит иначе: в настоящее время частицы такого аэродинамического диаметра в России нормированию не подлежат, однако, их угрозу по воздействию на здоровье человека западные источники приравнивают к очень высокой, ввиду проникающей способности таких частиц в дыхательные органы человека, в которых защитные механизмы человеческого организма не применимы. Совокупность токсичных химических соединений, выделяющихся при эксплуатации горно-обогатительного комбината с дисперсностью частиц, часть из которых способна проникать и аккумулироваться в дыхательных путях и легких, способна оказать мощный эффект на здоровье людей ближайших селитебных территорий.
В качестве мероприятия, способствующего уменьшению риска для здоровья населения, при наличии в непосредственной близости от горно-обогатительного комбината селитебной территории, может быть применена корректировка санитарно-защитных зон горно-обогатительных предприятий в сторону увеличения. Мелкодисперсные частицы с диаметром <1мкм способны не только беспрепятственно проникать и аккумулироваться в организме, но и так же подвергаться переносу на большие расстояния. Оценка дисперсного состава при проектировании санитарно-защитных зон и может стать серьезным шагом на пути к повышению эффективности мер по обеспечению санитарно-эпидемиологического благополучия населения.
Кроме вышесказанного, важно так же подчеркнуть, что загрязнение окружающей среды мелкодисперсными частицами чревато риском засорения почв, негативным воздействием на растительность. Мелкодисперсные частицы, оседая на поверхности листьев нарушают газообмен растений с окружающей средой. Твердые частицы за счет оседания придают листьям растений темный оттенок, что впоследствии приводит к перегреву листьев на солнце и последующему усыханию [2].
Литература:
- Микроскопическая угроза: частицы PM10 и PM2.5. База знаний. [Электронный ресурс] Портал химико-аналитического центра МГУ. — 2016. — URL: http://eco.chem.msu.ru/mikroskopicheskaya-ugroza-chasticzy-pm10 (дата обращения: 05.06.2017).
- Матиас Шуленбург. «Наночастицы — крохотные частицы с огромным потенциалом. Возможности и риски». Бонн, Берлин: Федеральное министерство образования и научных исследований (BMBF), 2008. С. 32–39.