Природный газ является одним из важнейших источников энергии, так как запасы его огромны, и он является экологически чистым топливом по сравнению с нефтепродуктами. Кроме того, выбор его как топлива помогает решать две проблемы окружающей среды: загрязнение атмосферы и парниковый эффект. Также актуальным на сегодняшний момент является использование сжиженных газов в качестве топлива для удаленных от магистральных трубопроводов уголков страны. Так как большинство крупнейших месторождений природного газа в России находятся в удаленных районах, неблагоприятных для строительства транспортных газопроводов, наиболее целесообразным здесь представляется транспортировка газа в жидком состоянии.
Сжиженный природный газ (СПГ) — это природный газ, охлажденный до температуры сжижения. СПГ представляет собой бесцветную жидкость без запаха, которая не токсична и не вызывает коррозии. В жидком состоянии газ занимает гораздо меньший объем. Одинаковое количество СПГ и газообразного природного газа отличаются по объему в 600 раз [1, с. 790].
Первые попытки сжижать природный газ в промышленных целях относятся к началу XX века. В 1917 году в США был получен первый СПГ, но развитие трубопроводных систем доставки надолго отложило совершенствование этой технологии. В 1941 году была совершена следующая попытка произвести СПГ, но промышленных масштабов производство достигло только с середины 1960-х годов [2].
Обострение топливно-энергетического кризиса и разработка новых месторождений, расположенных на морских шельфах, привели к тому, что в России началась активно обсуждаться проблема промышленного производства СПГ. Это связано с техническими и экономическими преимуществами применения природного газа для коммунального газоснабжения населенных пунктов, отдаленных от газовых сетей, использования в качестве моторного топлива для различных видов транспорта, создания систем резервирования газа, а также с предполагаемой транспортировкой природного газа зарубежным потребителям морским транспортом. В России строительство первого завода СПГ началось в 2006 году в рамках проекта «Сахалин-2». В 2009 году построенный «Сахалин Энерджи» начал работу. В 2014 году завод произвел 10,8 миллиона тонн (эквивалент 14,9 миллиарда кубических метров природного газа) СПГ, который затем транспортировался в Японию, Корею, Китай, Тайвань и Таиланд судами покупателей и танкерами-газовозами [3]. В последние десятилетия мировая индустрия СПГ претерпевает бурный расцвет. Крупнейшим потребителем является Япония, на долю которой пришлось 80,9 млрд куб. м. Крупнейший производитель — Индонезия (31,6 млрд. куб.м.) [4, с. 213]. Перспективы торговли СПГ представлены на рис. 1.
Рис. 1. Мировая торговля природным газом [5, с. 234]
Перспективность использования СПГ в качестве моторного топлива для автотранспорта стала очевидной для большинства стран мира. Особенно интенсивно это направление в автомобильной технике развивается в США, где СПГ как моторное топливо использует более 25 % муниципального транспорта. Аналогичная ситуация и в Западной Европе. Так, во многих городах Германии планируется перевести на СПГ муниципальный транспорт. В Италии принята экологическая программа применения СПГ на автотранспорте. Расширяется применение СПГ и на водном транспорте. В Норвегии компания «Statoil» приступила к серийному производству судов на СПГ [1, с. 794–795].
Сжиженный природный газ при атмосферном давлении имеет температуру от минус 173 оС до минус 158 оС [6, с. 216]. Процессу сжижения предшествует ступень охлаждения с целью выделения примесей, а также тяжелых углеводородов. Если газ содержит высокий процент двуокиси углерода, сероводород, азот, необходимы дополнительные инвестиции в его предварительную обработку для снижения риска разрушения оборудования в процессе сжижения. Для сжижения природного газа могут быть использованы принципы как внутреннего охлаждения, когда газ сам выступает в роли рабочего тела, так и внешнего охлаждения, когда для охлаждения и конденсации газа используются вспомогательные криогенные газы с более низкой температурой кипения (например, кислород, азот, гелий). В последнем случае теплообмен между природным газом и вспомогательным криогенным газом происходит через теплообменную поверхность [1, с. 796].
Можно выделить ряд преимущественных факторов использования СПГ:
– возможность газификации объектов, удаленных от магистральных трубопроводов на большие расстояния, путем создания резерва СПГ непосредственно у потребителя, избегая строительства дорогостоящих трубопроводных систем;
– высокая плотность, что определяет компактность и экономичность систем хранения и транспортировки СПГ на большие расстояния;
– СПГ — не самовозгорающийся нетоксичный газ, что выгодно отличает его в плане безопасности;
– возможность межконтинентальных перевозок СПГ специальными танкерами-газовозами, а также перевозка железнодорожным и автомобильным видами транспорта в цистернах;
– снижение выбросов СО2 и других парниковых газов (до 30 % по сравнению с бензином и дизельным топливом) при использовании СПГ в качестве моторного топлива;
– снижение коррозии и износа частей двигателя по сравнению с бензином. Это связано с тем, что газ не смывает масляную пленку со стенок цилиндра при холодном пуске.
Наряду с несомненными преимуществами, СПГ имеет и недостатки, связанные, в основном, с трудностями длительного хранения и необходимостью дорогостоящих криогенных резервуаров. Большое количество СПГ хранят в специальных емкостях, которые представляют собой сложные технологические сооружения. Так как температура СПГ всегда ниже температуры окружающей среды, то к нему осуществляется непрерывный подвод тепла. В результате этого происходит нагрев жидкости до температуры кипения с последующим испарением части СПГ. С учетом этой особенности главная задача при хранении СПГ сводится к максимальному сокращению потерь на испарение, т. е. снижению теплопритока из окружающей среды. Это может быть достигнуто как за счет выбора рациональной конструкции и формы резервуара, так и за счет применения наиболее эффективной теплоизоляции.
Различают активные и пассивные способы хранения. Активные способы хранения характеризуются отсутствием потерь СПГ. Это достигается за счет компенсации внешних теплопритоков, которая обеспечивается с помощью холодильных машин или переохлаждением природного газа. К пассивным относятся способы, которые обеспечивают снижение внешних притоков тепла за счет конструктивных особенностей и применения материалов с низкой теплопроводностью. При использовании пассивных способов длительное хранение СПГ приводит к выкипанию его значительной части и потери кондиции вследствие накопления примесей. Ввиду этого актуальность проблемы длительного хранения и возможные пути снижения потерь СПГ при его широком использовании в хозяйстве РФ будет постоянно возрастать [1, с. 810–813].
Известно устройство подземного хранилища СПГ, состоящего из железобетонного резервуара, который по наружной боковой поверхности окружен податливой прослойкой и изнутри покрыт слоями теплоизоляции и гидроизоляции. Хранилище расположено ниже уровня земли на отметке, предотвращающей промерзание поверхности земли при самом длительном расчетном хранении газа [7].
Однако в арктической зоне, с учетом вечной мерзлоты, отпадает необходимость глубокого заложения хранилища. Криогенное хранилище сжиженного природного газа выполняют в виде заглубленного сооружения и располагают в вечномерзлом грунте ниже уровня поверхности земли. Подача сжиженного природного газа осуществляется с помощью погружного криогенного насоса, помещенного внутри заглубленного хранилища СПГ [8].
Около 5 млн. км2 территории России — это районы с многолетней (вечной) мерзлотой (Рис. 2). Максимальной мощности вечная мерзлота достигает на севере Ямала, Гыдана, Таймыра. В некоторых районах Якутии ее величина превышает 1000–1500 м [9].
Рис. 2. Распространение многолетнемерзлых пород на территории России
Средняя температура вечной мерзлоты составляет –4…– 5 оС. Вследствие этого достигается снижение теплопритоков к криогенному хранилищу и увеличение срока бездренажного хранения. Соответственно, сокращаются энергетические затраты на поддержание криогенных температур в хранилищах СПГ. Данный способ хранения сжиженного природного газа выгоден также ввиду создания резерва непосредственно у потребителя.
Такие резервы можно создать в арктических портах России для обеспечения СПГ прилегающих районов. Доставка СПГ из Сахалина и Ямала возможна морским путем специальными танкерами, что экономически выгодно по сравнению с сухопутной транспортировкой или строительством сети трубопроводов СПГ. В качестве альтернативы транспортировке СПГ морским путем можно рассматривать создание системы газификации промышленных и социальных объектов сжиженным природным газом, произведенным на установках малой производительности. Арктическая зона России в целом представляет собой колоссальный сырьевой резерв страны и относится к числу немногих регионов мира, где имеются практически нетронутые запасы углеводородного и минерального сырья. Около 90 % всей площади шельфа России, составляющего 5,2–6,2 млн. км2, приходится на перспективные нефтегазоносные области, в том числе 1 млн. км2 на шельфе моря Лаптевых, Восточно-Сибирского и Чукотского морей [10].
Малотоннажные установки производства СПГ позволят на локальном социальном и промышленном уровне обеспечивать энергоресурсами удаленные малые города и поселки путем преобразования энергии СПГ в электрическую с помощью дизель-генераторов или малых ТЭЦ. По исследованиям Института систем энергетики им. Л. А. Мелентьева СО РАН, при реализации проекта производства СПГ на месторождении природного газа стоимость СПГ составит 2632 тыс. руб. за тонну. При замещении привозного дизельного топлива на тяжелом автотранспорте сжиженным природным газом экономия затрат на топливо составит 3138 %, так как цена дизельного топлива достигает 4041 тыс. руб. за тонну (без НДС) [11].
С учетом истощения запасов нефти, повышения экологических требований, газификация автомобильного транспорта, особенно тяжелых грузовиков и автобусов будет возрастать. Но широкому коммерческому использованию СПГ препятствует высокая стоимость производства и необходимость хранения в дорогостоящих криогенных резервуарах. Создание хранилищ, расположенных в вечномерзлом грунте, позволит уменьшить теплопритоки к резервуару, а также устранит проблемы поставки сжиженного природного газа в труднодоступные северные районы страны.
В целом внедрение СПГ на транспорте позволит России участвовать в формировании мирового рынка новых экологически чистых энергоносителей и технологий XXI в. и поможет в решении все более обостряющихся экологических проблем крупных городов страны.
Литература:
- Пирогов С. Ю., Акулов Л. А., Ведерников М. В. и др. Природный газ. Метан: Справ. — СПб.: НПО «Профессионал», 2008. — 848 с.
- Что такое сжиженный природный газ [Электронный ресурс] // Информаторий «Газпром»: [сайт]. [2003]. URL: http://www.gazprominfo.ru/articles/liquid-gas/ (дата обращения 26.10.2016).
- Информация о компании. Общие сведения. [Электронный ресурс] // Сахалин Энерджи: [сайт]. [2014]. URL: http://www.sakhalinenergy.ru/ru/company/overview.wbp (дата обращения 26.10.2016).
- Бушуева В. В., Телегина Е. А., Шафраник Ю. К. Мировой нефтегазовый рынок: инновационные тенденции. — М.: ИД «Энергия», 2008. — 358 с.
- Брагинский О. Б. Нефтегазовый комплекс мира. — М.: Изд-во «Нефть и газ» РГУ нефти и газа им. И. М. Губкина, 2006. — 640 с.
- ГОСТ Р 56021–2014. Газ горючий природный сжиженный. Топливо для двигателей внутреннего сгорания и энергетических установок. Технические требования. — Введ. 2016–01–01. — М.: Стандартинформ, 2014. — 14 с.
- Пат. 2510360 С2 (РФ).
- Пат. 2570952 С1 (РФ).
- Ледники и снежники России. [Электронный ресурс] // Федеральный портал Protown.ru. [сайт]. [2008]. URL: http://protown.ru/information/hide/2834.html (дата обращения 26.10.2016).
- Месторождения. [Электронный ресурс] // Информационное агентство «Арктика-Инфо» [сайт]. [2011]. URL: http://www.arctic-info.ru/encyclopedia/fields/ (дата обращения 26.10.2016).
- Мельников, В.Б., Федорова, Е. Б. Основные проблемы малотоннажного производства и потребления сжиженного природного газа // Труды Российского государственного университета нефти и газа имени И. М. Губкина. — 2014. — № 4 (277). — C. 112–123.