Появление земледелия является важнейшим историческим поворотом в развитии человечества. Выращивая для своего пропитания растения, человек мог относительно свободно жить, расселяться и осваивать новые территории. Эпоха земледелия на Земле, как отмечают ведущие археологи, началась в VII-VI веке до нашей эры и до настоящего времени ее отдельные элементы постоянно совершенствуются. За века человечество изобрело множество способов обработки почвы и выращивания на ней растений, начиная с подсечно-огневой системы, где расчищались территории за счет выжигания леса и, заканчивая современным адаптивно-ландшафтным и органическим земледелием, которые позволяют получать продукцию без вреда природе. Все известные человечеству системы земледелия объединяет тот факт, что постоянно идет поиск путей решения увеличения урожайности и снижения ее себестоимости, в последние десятилетия аграрии стали обращать внимание и на другие факторы — плодородие почвы и экологически чистую продукцию.
Время от времени возникают жаркие дебаты по поводу эффективности той или иной системы обработки почвы — приводятся опыты передовых предприятий различных стран, делаются научные расчеты и попытки моделирования почвообразовательных процессов с использованием компьютеров и международных баз данных. Периодически появляется информация о том, что можно почву не обрабатывать, а просто сеять и убирать. Сейчас такую технологию называют модным словом «No-till», хотя многие специалисты аграрного сектора знают ее и под другим именем — нулевая обработка почвы. Читая публикации по данной технологии, которая несет аграриям только плюсы в виде снижения затрат на топливо, амортизацию машинотракторного парка, стабилизацию почвенного плодородия и получение экологически чистой продукции, начинаешь сомневаться и искать какой-либо подвох. Обычно в таких случаях я начинаю искать аналогии в окружающей нас природе, которую, как известно не обманешь.
Первый вопрос, который можно задать самому себе — почему наши предки, использовавшие “No-till” на заре земледелия еще в каменном веке отказались от него, решив пахать примитивными орудиями и на живой тягловой силе? Разве они не думали о снижении затрат? Однако всё равно перешли на обработку почвы, а теперь, в настоящее время, почему то активно нам навязывается мысль об эффективности No-till.
Давайте разберем новомодную систему земледелия более детально и, чтобы не быть голословными, мы приведем в качестве доказательств результаты многолетних исследований кафедр общего земледелия; почвоведения и агрохимии ГАУ Северного Зауралья, исследования которых охватывают временной промежуток в 20–40 лет. Все исследования проводились в стационарных условиях, что указывает на высокую точность полученных результатов. Исследования кафедры земледелия показали, что общая порозность пахотного слоя (0–30 см) на отвальном фоне составляет 54, тогда как на нулевой — 49 % от объема [1]. Отвальная обработка почвы за 32 года не повлияла на общую порозность пахотного горизонта, которая оценивалась как отличная. Безотвальное рыхление и нулевая обработка негативно влияют на порозность, которая снизилась до 47–52 % от объема почвы.
В литературе представлено достаточное количество информации о том, что отказ от вспашки способствует стабилизации гумуса в пахотных почвах. Теоретически это возможно, так как ежегодные механические обработки приводят к усилению аэрации гумусового слоя и стимулируют аэробную микрофлору, которая минерализует органическое вещество почвы (растительные остатки и гумус). В этом случае высвобождаются дополнительные питательные вещества для растений, что положительно сказывается на их урожайности [2,3].
При использовании технологии “No-till” растительные остатки в виде измельченной соломы остаются на поверхности почвы. Органические удобрения, надземная масса сидератов — не заделываются в почву, так как принципиально отсутствует оборот пласта. Как мы уже говорили, усиление аэрации стимулирует микробов, которые разрушают органическое вещество — так почему же люди думают, что солома, навоз или сидераты, находясь на поверхности почвы, будут перерабатываться в гумус, который в дальнейшем просочится вглубь почвы и стабилизирует гумусное состояние пашни? Для того, чтобы узнать конечный результат разложения растительных остатков на поверхности почвы, следует обратиться к естественным (целинным) почвам, где эта же ситуация присутствует.
В природе есть места, где растительные остатки накапливаются преимущественно на поверхности — это сомкнутые (густые) леса, где из-за недостатка света травянистая растительность угнетена. В качестве растительных остатков выступает или хвоя или листва. В таких местах никогда не образуются плодородные почвы, а только подзолистые, светло-серые и бурые лесные — любой агроном скажет, что перечисленные почвы являются крайне неплодородными. В результате минерализации растительных остатков на поверхности почвы, один из главнейших элементов питания — азот, не поступает в почву, а легко и быстро улетучивается в виде газообразных оксидов азота. В верхних слоях почвы этого не происходит за счет сорбции и обменных реакций в почвенно-поглотительном комплексе. Так почему же в природе растительные остатки на поверхности минерализуются, а на пашне, почему-то должны трансформируются в гумус? В этом случае можно дать объяснение с точки зрения обогащения верхних слоев почвы за счет корневой системы растений, которая после отмирания может под действием микрофлоры трансформироваться в гумус. Это логично, так как общеизвестно, что самые плодородные почвы, черноземы, сформировались именно под травянистой растительностью, однако биомасса корней многолетних трав в разы больше того, что оставляют после себя зерновые культуры и этого явно недостаточно для стабилизации гумусного состояния [4].
Для доказательства вышесказанного обратимся к исследованиям кафедры земледелия, где изучались отвальная, безотвальная и нулевая системы основной обработки почвы (табл. 1). Как мы видим, ежегодная отвальная обработка с обязательной заделкой соломы стабилизирует содержание гумуса в слое 0–30 см, глубже — происходит снижение содержания гумуса с 4,68 до 4,57 %, что объясняется дефицитом растительных остатков в этом слое. При безотвальной и нулевой системах основной обработки, которые объединяет тот факт, что измельченная солома остается на поверхности, содержание гумуса за 32 года возросло только в слое 0–10 см с 8,25 и 8,33 до 8,85 и 8,0 % соответственно. Глубже 10 сантиметров минерализация гумуса идет полным ходом.
Таблица 1
Послойное содержание гумуса вчерноземе выщелоченном при различных системах обработки,% [5]
Слой почвы, см |
Отвальная |
Безотвальная |
Нулевая |
|||
1977г. |
2008г. |
1977г. |
2008г. |
1977г. |
2008г. |
|
0–10 |
8,05 |
8,32 |
8,25 |
8,85 |
8,33 |
8,90 |
10–20 |
8,71 |
8,71 |
8,52 |
7,84 |
8,44 |
7,75 |
20–30 |
7,73 |
7,23 |
7,68 |
6,21 |
7,76 |
7,00 |
30–40 |
4,68 |
4,57 |
4,68 |
3,84 |
4,68 |
4,02 |
Расчеты показали, что 32-летнее использования безотвальной системы основной обработки привело к минерализации 35 т/га гумуса в слое 0–50 см; при использовании нулевой технологии — 22 т/га.
Другим положительным моментом технологии “No-till” считают создание мульчирующего слоя из измельченной соломы и пожниных остатков. С этим можно согласиться, но только в тех районах, где существует проблема дефицита влаги. В условиях Западной Сибири проблема недостатка воды в почве присутствует, но не стоит забывать о том, что в наших условиях необходимо учитывать неблагоприятный температурный режим почв. Почвы Сибири характеризуются сильным промерзанием, достигающим 2 метров, а на отдельных территориях к этому прибавляется близкое залегание грунтовых вод. Оттаивание почвы в условиях Сибири происходит от поверхности вглубь. Эти факторы приводят к тому, что наши почвы достаточно хорошо прогреваются только в первой половине лета, когда зерновые культуры уже находятся в фазе выхода трубки. При близком залегании грунтовых вод (1–2 метра) температура пахотного слоя не превышает 10–12 0С, что негативно сказывается на активности микрофлоры и корневой системы зерновых культур [6]. Почему же мы не задумываемся о том, что мульчирующий слой из соломы является прекрасным теплоизолятором, препятствующий быстрому оттаиванию и прогреванию пахотного слоя? Пониженная температура в корнеобитаемой зоне негативно влияет на почвенную микрофлору, формирующую питательный режим пашни, что выражается снижением урожайности зерновых культур в условиях Тюменской области при использовании технологии No-till.
Если вспомнить историю появления технологии нулевой обработки почвы или No-till, то необходимо отметить, что они появились и использовались в сухом, жарком климате, где процесс оттаивании и прогревания пахотного слоя не актуален, а в первую очередь внимание обращается на сохранение воды в почве. Почвенный покров сельскохозяйственной зоны Тюменской области представлен преимущественно почвами с тяжелым гранулометрическим составом, со склонностью образования почвенной корки [6]. Отсутствие глубоких обработок почвы приводит к переуплотнению пахотного слоя, что негативно сказывается на водопроницаемости пашни. Результатом этого является непродуктивная потеря воды: вместо того, чтобы ей пройти вглубь почвенного профиля через рыхлый пахотный слой, вода, теряется в виде физического испарения или поверхностного стока. В таком случае запасы воды в корнеобитаемой зоне не пополняются должным образом, что опять же негативно влияет на урожайность сельскохозяйственных культур [7].
Многолетние исследования В. В. Рзаевой [8] показали, что урожайность зерна яровой пшеницы и зеленой массы однолетних трав на отвальной обработке выше, чем при нулевой технологии, поэтому переход на технологию No-till в Западной Сибири нецелесообразен.
Рис. 1. Урожайность зерна яровой пшеницы и зеленой массы однолетних трав при использовании различных систем основной обработки почвы, т/га (1994-2012 гг.) [8]
Получение экологически чистой продукции на полях с применением NO-till также будет проблематичным. Ведь отвальная обработка предусматривает оборот пласта и сброс всех семян сорных растений на дно борозды. Большинство однолетних сорняков прорасти с такой глубины, уже не могут — тем самым осуществляется агротехнический метод борьбы с засоренностью посевов. При использовании технологии No-till все семена сорняков остаются на поверхности, где и прорастают на следующий год. Исследования кафедры земледелия показали, что засоренность посевов на отвальном фоне в период кущения составляет 37,7 шт/м2 при степени засорения 7,10 %, в то же время данные показатели на нулевой обработке почвы составили 60 шт/м2 и 12,31 % соответственно [9]. Данный факт убедительно показывает, что без гербицидов на полях, где применяется технология NO-till не обойтись.
Таблица 2
Засоренность (шт/м2) истепень засорения (%) посевов яровой пшеницы при различных системах основной обработки почвы, 2005–2012гг. [9]
Системы основной обработки почвы |
Кущение |
перед уборкой |
||
Засоренность, шт/м2 |
Степень засорения,% |
Засоренность, шт/м2 |
Степень засорения,% |
|
Отвальная |
37,7 |
7,10 |
7,0 |
1,47 |
Нулевая |
60,0 |
12,31 |
11,0 |
2,67 |
Необходимо отметить, что перед уборкой засоренность посевов также отличалась по вариантам, что обусловлено прорастанием новых сорняков после обработки гербицидами.
Заключение
Технология No-till в условиях Западной Сибири не может обеспечить стабилизацию гумуса пахотных почв, ухудшает температурный и водный режимы пашни, нарушая нормальную деятельность почвенной микрофлоры, и не гарантирует получения экологически чистой продукции вследствие необходимости обязательного использования средств химической защиты растений. По сравнению с отвальной системой обработки почвы урожайность сельскохозяйственных культур при использовании технологии No-till заведомо ниже.
Литература:
- Рзаева В. В. Динамика плотности сложения и общей порозности чернозема выщелоченного при длительном сельскохозяйственном использовании в Северном Зауралье/В. В. Рзаева, Д. И. Ерёмин//Аграрный вестник Урала.-2010. -№ 4.-С. 62–65.
- Ерёмин Д. И. Скорость разложения соломы яровой пшеницы при различных системах основной обработки почвы в лесостепной зоне Зауралья /Д. И. Ерёмин, А. А. Ахтямова //Вестник Государственного аграрного университета Северного Зауралья. 2015. № 1(28). С. 16–21.
- Абрамов Н. В. Азот текущей нитрификации и хозяйственный вынос как факторы программирования урожайности яровой пшеницы в условиях Северного Зауралья /Н. В. Абрамов, Д. И. Ерёмин //Сибирский вестник сельскохозяйственной науки. 2009. № 2. С. 25–29.
- Ерёмин Д. И. Научно-обоснованный подход к выбору севооборота — залог стабилизации гумусного состояния пахотных черноземов /Д. И. Ерёмин, А. Н. Моисеев //Агропродовольственная политика России. 2014. № 6(18). С.48–50.
- Рзаева В. В. Гумусное состояние черноземов выщелоченных при различных системах основной обработки в условиях Северного Зауралья /В. В. Рзаева, Д. И. Ерёмин //Аграрный научный журнал. — 2010. № 7. С. 31–34.
- Каретин Л. Н. Почвы Тюменской области / Каретин Л. Н. // Новосибирск: Наука. — 1990. — 285 с.
- Еремин Д. И. Динамика влажности чернозема выщелоченного при различных системах обработки под яровую пшеницу в условиях Северного Зауралья /Д. И. Ерёмин, О. А. Шахова //Аграрный вестник Урала. 2010. № 1(67). С. 38–40.
- Рзаева В. В. Системы основной обработки почвы в земледелии Северного Зауралья: дисс. д-ра с.-х. наук. Тюмень. 2014. 529 с.
- Рзаева В. В. Сорные растения в пшеничном агрофитоценозе при основной обработке почвы в Северном Зауралье /В. В. Рзаева //Инновации в науке. 2013. № 25. С.86–91.