Демонстрация зависимости интерференционной картины от длин волн, испускаемых точечными источниками, с помощью компьютерной модели | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Физика

Опубликовано в Молодой учёный №3 (83) февраль-1 2015 г.

Дата публикации: 28.01.2015

Статья просмотрена: 488 раз

Библиографическое описание:

Данилов О. Е. Демонстрация зависимости интерференционной картины от длин волн, испускаемых точечными источниками, с помощью компьютерной модели // Молодой ученый. — 2015. — №3. — С. 23-26. — URL https://moluch.ru/archive/83/15324/ (дата обращения: 18.12.2018).

В статье рассматривается, как с помощью компьютерной модели интерференции от двух точечных источников когерентных волн, предлагаемой автором, демонстрируется зависимость интерференционной картины от длин этих волн.

Ключевые слова:визуализация, компьютерная визуализация, компьютерное моделирование, модель, учебная компьютерная модель, интерференция, опыт Юнга, когерентные волны.

 

Ранее нами уже были опубликованы статьи, посвященные учебной компьютерной модели интерференции волн от двух точечных источников [1; 2; 3; 4; 5; 6; 7]. Эта статья является их логическим продолжением.

Из учебной теории известна формула для расчета ширины максимумов интерференционной картины, полученной от двух точечных источников когерентных волн (рис. 1) [1]:

Δx= xk+1 — xk= / d,

где k — номер интерференционного максимума, y — расстояние от отрезка, соединяющего источники волн; λ — длина волны; d — расстояние между источниками. Выражение получено аналитически при условии, что расстояние y >> d. Именно поэтому на графике, изображающем зависимость интенсивности интерферируемой волны I(x) от координаты x максимумы интенсивности имеют одинаковую ширину (рис. 1). Эта приближенная формула позволяет сделать вывод, согласно которому при изменении длины волны и неизменных расстояниях y и d, ширина интерференционных максимумов также будет изменяться. И эта зависимость ширины максимума от длины волны будет прямо пропорциональной. Иными словами, например, при увеличении длины волны в два раза ширина интерференционных максимумов, находящихся на прежнем расстоянии от источников когерентных волн, также увеличится в два раза (рис. 1). Следует отметить, что, на самом деле, если считать волны, распространяющиеся от точечных источников, сферическими, ширина максимумов в разных местах интерференционной картины будет различной, — она будет увеличивается по мере удаления от центрального (нулевого) максимума интенсивности волны при перемещении вдоль прямой, параллельной отрезку, соединяющему источники волн. Это будет хорошо заметно в случае расчета интерференционной картины с помощью компьютера и последующего вывода ее на экран. Тем не менее, вывод о том, что при увеличении длины волны ширина максимумов будет увеличиваться, является правильным.

Рис. 1. Теоретические картины распределений интенсивности интерферируемой волны вдоль отрезка прямой, соответствующие разным длинам волн

 

В предыдущих наших статьях уже была описана компьютерная программа, моделирующая двумерную (плоскую) и одномерную картины распределения интенсивности интерферируемой волны в пространстве. Поэтому кратко рассмотрим, как с помощью нее можно демонстрировать учащимся изменение интерференционной картины при изменении длин интерферирующих волн. Сначала с помощью интерфейса программы устанавливают некоторые одинаковые значения длин волн, распространяющихся от источников. Наблюдают картины распределений (рис. 2). Отмечают, что максимумы на одномерном распределении (расположено в верхней части окна программы) неодинаковы по ширине. Кроме того, картина двумерного распределения позволяет говорить о том, что ширина каждого максимума увеличивается по мере удаления от источников.

Рис. 2. Интерференционная картина

 

После этого, оставляя все параметры, кроме длин волн, неизменными, наблюдают новые картины двух распределений (рис. 3). Замечают, что ширина максимумов в том же месте пространства увеличивается примерно в такое же число раз, в какое была увеличена длина волны от каждого из источников.

Предлагаемая нами для изучения интерференции волн учебная компьютерная модель имеет несомненные преимущества перед обычными иллюстрациями в учебниках, так как обеспечивает лучшую наглядность, а также является интерактивной. Последнее ее качество позволяет организовать активное обучение, предполагающее модельное экспериментирование. Это, в свою очередь, развивает у учащихся навыки, необходимые для исследовательской деятельности.

Рис. 3. Изменение вида интерференционной картины

 

Литература:

 

1.                  Данилов О. Е. Демонстрация зависимости интерференционной картины от расстояния между двумя источниками волн с помощью компьютерной модели / О. Е. Данилов // Молодой ученый. — 2015. — № 1. — С. 15–18.

2.                  Данилов О. Е. Демонстрация зависимости распределения интенсивности интерферируемой волны вдоль прямой от расстояния между этой прямой и отрезком, соединяющим точечные источники когерентных волн, с помощью компьютерной модели / О. Е. Данилов // Молодой ученый. — 2014. — № 16. — С. 15–19.

3.                  Данилов О. Е. Демонстрация явления интерференции волн от двух точечных источников с помощью компьютерной модели / О. Е. Данилов // Молодой ученый. — 2014. — № 13. — С. 5–10.

4.                  Данилов О. Е. Изучение интерференции с помощью компьютерного моделирования / О. Е. Данилов // Дистанционное и виртуальное обучение. — 2013. — № 9. — С. 50–58.

5.                  Данилов О. Е. Компьютерная модель интерференции от двух точечных источников / О. Е. Данилов // Информатика: проблемы, методология, технологии: Материалы XI Международной научно-практической конференции, Воронеж, 10–11 февраля 2011 г.: в 3 т. Т. 3. Школа-конференция «Информатика в образовании». — Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2011. — С. 87–89.

6.                  Данилов О. Е. Формирование умения проводить теоретическое исследование при изучении распределения физической величины в пространстве с помощью компьютерной модели / О. Е. Данилов // Дистанционное и виртуальное обучение. — 2013. — № 7. — С. 84–94.

7.                  Компьютерная модель интерференции / О. Е. Данилов. — Электрон. дан. — Сайты Google, 2011. — Режим доступа: https://sites.google.com/site/intercommod/. — Загл. с экрана.

Основные термины (генерируются автоматически): интерференционная картина, волна, длина волны, источник, учебная компьютерная модель, ширина максимумов, длина волн, мера удаления, увеличение длины волны.


Похожие статьи

Демонстрация явления интерференции волн от двух точечных...

Данилов, интерференционная картина, компьютерное моделирование, виртуальное обучение, волна, источник, распределение интенсивности, помощь, компьютерная модель, результирующая волна.

Демонстрация явления интерференции волн от двух точечных...

Данилов, интерференционная картина, компьютерное моделирование, виртуальное обучение, волна, источник, распределение интенсивности, помощь, компьютерная модель, результирующая волна.

Демонстрация зависимости распределения интенсивности...

В статье рассматривается, как с помощью компьютерной модели интерференции когерентных волн от двух точечных источников, предлагаемой автором, демонстрируется зависимость интерференционной картины...

Демонстрация зависимости распределения интенсивности...

В статье рассматривается, как с помощью компьютерной модели интерференции когерентных волн от двух точечных источников, предлагаемой автором, демонстрируется зависимость интерференционной картины...

Демонстрация зависимости интерференционной картины от...

интерференционная картина, волна, обучающийся, распределение интенсивности, источник, максимум интенсивности, плоскость, учебная компьютерная модель.

Демонстрация зависимости интерференционной картины от...

интерференционная картина, волна, обучающийся, распределение интенсивности, источник, максимум интенсивности, плоскость, учебная компьютерная модель.

Демонстрация зависимости интерференционной картины от...

числу длин волн (kλ) или четному числу длин полуволн (2kˑ λ/2). Иными словами, если колебания, созданные двумя волнами в данной точке

Рис. 4. Смена центрального максимума интерференционной картины на минимум при изменении разности начальных фаз волн на π.

Демонстрация зависимости интерференционной картины от...

числу длин волн (kλ) или четному числу длин полуволн (2kˑ λ/2). Иными словами, если колебания, созданные двумя волнами в данной точке

Рис. 4. Смена центрального максимума интерференционной картины на минимум при изменении разности начальных фаз волн на π.

Методика изучения интерференции волн от двух точечных...

физическая величина, компьютерная визуализация, одномерное распределение, виртуальный эксперимент, волновое поле, интерференционная картина, двумерное распределение, результирующая волна...

Методика изучения интерференции волн от двух точечных...

физическая величина, компьютерная визуализация, одномерное распределение, виртуальный эксперимент, волновое поле, интерференционная картина, двумерное распределение, результирующая волна...

Учебные компьютерные модели механических волн

модель, моделирование, учебные компьютерные модели, волновые явления, механические волны, поперечные волны, продольные

Демонстрация зависимости интерференционной картины от расстояния между двумя источниками волн с помощью компьютерной модели.

Учебные компьютерные модели механических волн

модель, моделирование, учебные компьютерные модели, волновые явления, механические волны, поперечные волны, продольные

Демонстрация зависимости интерференционной картины от расстояния между двумя источниками волн с помощью компьютерной модели.

Учебные компьютерные модели волновых процессов и явлений

Ключевые слова: абстрагирование, учебные компьютерные модели, волновые явления, волновые процессы, волны, цуг, обучение физике, наблюдение, сравнение, измерение, эксперимент, информационные технологии, общенаучные методы исследования...

Учебные компьютерные модели волновых процессов и явлений

Ключевые слова: абстрагирование, учебные компьютерные модели, волновые явления, волновые процессы, волны, цуг, обучение физике, наблюдение, сравнение, измерение, эксперимент, информационные технологии, общенаучные методы исследования...

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Демонстрация явления интерференции волн от двух точечных...

Данилов, интерференционная картина, компьютерное моделирование, виртуальное обучение, волна, источник, распределение интенсивности, помощь, компьютерная модель, результирующая волна.

Демонстрация явления интерференции волн от двух точечных...

Данилов, интерференционная картина, компьютерное моделирование, виртуальное обучение, волна, источник, распределение интенсивности, помощь, компьютерная модель, результирующая волна.

Демонстрация зависимости распределения интенсивности...

В статье рассматривается, как с помощью компьютерной модели интерференции когерентных волн от двух точечных источников, предлагаемой автором, демонстрируется зависимость интерференционной картины...

Демонстрация зависимости распределения интенсивности...

В статье рассматривается, как с помощью компьютерной модели интерференции когерентных волн от двух точечных источников, предлагаемой автором, демонстрируется зависимость интерференционной картины...

Демонстрация зависимости интерференционной картины от...

интерференционная картина, волна, обучающийся, распределение интенсивности, источник, максимум интенсивности, плоскость, учебная компьютерная модель.

Демонстрация зависимости интерференционной картины от...

интерференционная картина, волна, обучающийся, распределение интенсивности, источник, максимум интенсивности, плоскость, учебная компьютерная модель.

Демонстрация зависимости интерференционной картины от...

числу длин волн (kλ) или четному числу длин полуволн (2kˑ λ/2). Иными словами, если колебания, созданные двумя волнами в данной точке

Рис. 4. Смена центрального максимума интерференционной картины на минимум при изменении разности начальных фаз волн на π.

Демонстрация зависимости интерференционной картины от...

числу длин волн (kλ) или четному числу длин полуволн (2kˑ λ/2). Иными словами, если колебания, созданные двумя волнами в данной точке

Рис. 4. Смена центрального максимума интерференционной картины на минимум при изменении разности начальных фаз волн на π.

Методика изучения интерференции волн от двух точечных...

физическая величина, компьютерная визуализация, одномерное распределение, виртуальный эксперимент, волновое поле, интерференционная картина, двумерное распределение, результирующая волна...

Методика изучения интерференции волн от двух точечных...

физическая величина, компьютерная визуализация, одномерное распределение, виртуальный эксперимент, волновое поле, интерференционная картина, двумерное распределение, результирующая волна...

Учебные компьютерные модели механических волн

модель, моделирование, учебные компьютерные модели, волновые явления, механические волны, поперечные волны, продольные

Демонстрация зависимости интерференционной картины от расстояния между двумя источниками волн с помощью компьютерной модели.

Учебные компьютерные модели механических волн

модель, моделирование, учебные компьютерные модели, волновые явления, механические волны, поперечные волны, продольные

Демонстрация зависимости интерференционной картины от расстояния между двумя источниками волн с помощью компьютерной модели.

Учебные компьютерные модели волновых процессов и явлений

Ключевые слова: абстрагирование, учебные компьютерные модели, волновые явления, волновые процессы, волны, цуг, обучение физике, наблюдение, сравнение, измерение, эксперимент, информационные технологии, общенаучные методы исследования...

Учебные компьютерные модели волновых процессов и явлений

Ключевые слова: абстрагирование, учебные компьютерные модели, волновые явления, волновые процессы, волны, цуг, обучение физике, наблюдение, сравнение, измерение, эксперимент, информационные технологии, общенаучные методы исследования...

Задать вопрос