Структура модуля, его основные блоки | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Педагогика

Опубликовано в Молодой учёный №7 (66) май-2 2014 г.

Дата публикации: 17.05.2014

Статья просмотрена: 470 раз

Библиографическое описание:

Титова, Е. И. Структура модуля, его основные блоки / Е. И. Титова, А. Д. Мартынова. — Текст : непосредственный // Молодой ученый. — 2014. — № 7 (66). — С. 563-564. — URL: https://moluch.ru/archive/66/11100/ (дата обращения: 16.01.2025).

Модульное обучение уже занимает особую нишу в сфере высшего образования. Проведение занятий, составление блоков каждого модуля и представление дисциплины по модулям представляет интерес и имеет множество интерпретаций. В данной статье мы хотели бы показать наше представление структуры модуля через следующие блоки.

Блок входного контроля (БвхК): содержит небольшую проверочную работу на выявление остаточных знаний необходимых в изучении новой темы.

Теоретический блок краткого изложения (ТБкр): состоит из опорных таблиц, составленных преподавателем по каждому разделу изучаемой темы.

Теоретический блок работы с учебными элементами (ТБ): содержит более подробное рассмотрение каждого раздела изучаемой темы с доказательствами и примерами. Идет совместная работа преподавателя со студентами.

Блок применения (БП): Решение практических задач по изучаемым темам.

Блок углубления (БУ): Решение профессионально — прикладных задач и задач более сложного характера.

Блок контроля (БК): защита студентами изученной темы в виде решения аналогичных задач из блока применения, самостоятельной работы или устного опроса.

Блок стыковки (БС): рассмотрение наиболее типичных ошибок по теме и их ликвидация.

Блок выходного контроля (БВК): содержит РГР, ТР, контрольную работу или коллоквиум по изученной теме.

Приведем описание блоков модуля «ИНТЕГРАЛЫ»

БвхК: содержит математический диктант на знание таблицы производных.

ТБкр: Содержит таблицы, следующего содержания.

Таблица 1

Неопределенный интеграл

Понятие первообразной

Свойства неопределенного интеграла

Таблица простейших интегралов

Таблица 2

Методы интегрирования

Интегрирование заменой переменной

Интегрирование рациональных дробей

Интегрирование иррациональных функций

Интегрирование тригонометрических функций

Интегрирование по частям

Таблица 3

Определенный интеграл

Несобственные интегралы 1 рода

Несобственные интегралы 2 рода

Таблица 4:

Приложение определенного интеграла

Вычисление площадей плоских фигур

Вычисление длины дуги кривой

Вычисление объемов тел

ТБ: Подробное изучение каждой выданной таблицы, вывод формул, рассмотрение основных определений. Дополнение таблиц, полученной информацией.

БП: Решение примеров на интегрирование в следующей последовательности: непосредственное интегрирование, метод замены переменной, интегрирование по частям, интегрирование рациональные функций, интегрирование тригонометрических и иррациональных функций; вычисление определенного интеграла всеми изученными способами; несобственные интегралы; приложение интегрального исчисления: вычисление площадей, длин дуг, объемов.

БУ: Решаем прикладные задачи в строительстве: задачи на исследование деформации строительных сооружений и колебательных процессов, задачи, в которых рассматривается скорость протекания процессов и другие, связанные с конкретной специальностью обучаемого.

БК: Целесообразно составить три контрольные работы: 1) на основные простые методы интегрирования; 2) на интегрирование рациональных, тригонометрических и иррациональных функций; 3) на определенный интеграл и приложения. По мере изучения студенты решают свои варианты и отчитываются перед преподавателем.

БВК: Содержит РГР, в которую включено 10 заданий на каждый вид интегрирования.

Данное представление модуля не фиксировано и может быть изменено каждым преподавателем на его усмотрение. Предложенное составление является своего рода рекомендацией.

Литература:

1.                   Акимова И. В., Губанова О. М., Титова Е. И. Возможности реализации модульного подхода при обучении бакалавров педагогических специальностей на примере темы «Введение в алгебру логики»// Современные проблемы науки и образования. № 5.-2013 г.

2.                   Ермолаева Е. И. Систематизация математических знаний студентов строительных специальностей в процессе реализации модульного обучения [Текст]: Дис.... канд. пед. наук: 13.00.08/ Е. И. Ермолаева — Пенза, 2008. — 170 с.

3.                   Ермолаева Е. И. Особенности реализации модульного обучения в системе высшего образования //В мире научных открытий. 2010. № 4–5. С. 109–110.

4.                   Ермолаева Е. И. Проблемы усвоения математических знаний студентами технических вузов //Актуальные проблемы гуманитарных и естественных наук. 2010. № 7. С. 270–272.

5.                   Жидкова А. Е., Титова Е. И. Рекомендации для преподавателей по использованию технологии модульного обучения// Молодой ученый. 2014. № 2 (61). С. 756–757.

6.                   Крымская Ю. А., Титова Е. И., Ячинова С. Н. Профессиональная подготовка строителей через решение математических задач// Современные проблемы науки и образования, № 2, 2014.

Основные термины (генерируются автоматически): интегрирование, блок, вычисление площадей, задача, интеграл, неопределенный интеграл, таблица, функция.


Задать вопрос