Авторы: Максимов Василий Васильевич, Фомин Андрей Николаевич

Рубрика: Технические науки

Опубликовано в Молодой учёный №7 (66) май-2 2014 г.

Дата публикации: 17.05.2014

Статья просмотрена: 15 раз

Библиографическое описание:

Максимов В. В., Фомин А. Н. Ослабление поверхностных волн течением, вызываемым помещенным в жидкость источником // Молодой ученый. — 2014. — №7. — С. 142-146.

В данной работе рассматривается задача о воздействии течения, создаваемого источником, на распространение поверхностных волн. Указывается теоретическая возможность полного гашения волн подбором соответствующих характеристик источника.                         

Ключевые слова: поверхностные волны, гашение, источник.

Рассмотрим плоское потенциальное движение идеальной несжимаемой жидкости, ограниченной сверху свободной поверхностью, снизу – непроницаемым дном. Исследуем изменение интенсивности исходного волнения за счет создания течения от источника, помещенного под свободной поверхностью на пути распространения волн. Известно [1], что эта задача – нелинейна. Для получения решения в замкнутой форме будем рассматривать ее учетом традиционной линеаризации.

1.      Постановка задачи. Требуется найти потенциал скорости  , удовлетворяющий уравнению Лапласа

 и краевым условиям:

а также некоторым условиям на бесконечности, которые будут указаны ниже. Здесь ось  направлена вдоль невозмущенного уровня свободной поверхности вправо, ось  – вертикально вверх;  – ускорение свободного падения;  – глубина жидкости.

            Ордината свободной поверхности определяется выражением [1]:

Для дальнейшего положим:

где  – потенциал скорости и ордината свободной поверхности исходного волнения;  – интенсивность источника;   - величина заглубления источника;  – возмущенная часть свободной поверхности. Поставим и условия на бесконечности:

Пусть

где  – амплитуда, волновое число, частота и фаза исходных волн;  – амплитуда, частота и фаза колебаний источника. Положим [2]

и сформулируем задачу для :

где величины  - искомые.

Поставленная задача определяет потенциал скорости при волнообразовании от источника. Это решение симметрично по  относительно .

2.      Решение поставленной задачи. Приведем краткое изложение метода, предложенного Л. Н. Сретенским[1], с использованием прямого пути построения решения.

В силу свойства симметрии решения, гармоническую функцию  представим в виде:

Удовлетворяя граничным условиям, получаем:

Отсюда, применяя свойства интеграла Фурье и пользуясь равенством

получаем

Ордината свободной поверхности определяется выражением:

в котором подынтегральная функция обращается в бесконечность при

Корнями этого уравнения являются:

причем  есть корень уравнения

В этом случае предыдущий интеграл следует понимать в смысле главного значения по Коши [3].

Вычислим его. Представим

где

Продолжим аналитически подынтегральную функцию на область плоскости комплексного переменного , ограниченную сверху полуокружностью , снизу – отрезками вещественной оси  и полуокружностями расположенными ниже вещественной оси. Согласно теореме Коши [3], интеграл от аналитической функции

по указанному контуру будет  равен  умноженному на сумму вычетов в точках

Отсюда получаем после перехода к пределу при  что

Следовательно

Чтобы удовлетворить условиям на бесконечности, надо к полученному частному решению неоднородной задачи присоединить решение однородной задачи:

При этом:

Тогда будем иметь:

Итак, ордината свободной поверхности при больших  принимает вид:

Пусть  Найдем  доставляющее максимум величины  Затем следует подобрать параметры  с тем, чтобы минимизировать В общем случае    максимум выражения для ординаты свободной поверхности по  находится численным решением трансцендентного уравнения; последующая минимизация также осуществляется численно.

3.      Частный случай. В случае  получается аналитическое  решение задачи. Тогда:

где

Таким образом, амплитуда прошедшей волны явно выражается через параметры источника. Нетрудно видеть в этом случае, что минимум выражения для амплитуды прошедшей волны достигается при   и равен

Отсюда, проходящая волна исчезает при  Подставляя это  условие в выражение для амплитуды проходящей волны, получаем необходимую величину расхода источника, находящегося на глубине :

Литература:

1.                  Сретенский Л.Н. Теория волновых движений жидкости. - М.: Наука, 1977.

2.                  Хаскинд М.Д. Гидродинамическая теория качки корабля. – М.: Наука, 1973.

3.                  Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного.  – Изд. 5-е, испр. – М.: Наука, 1987.

Основные термины (генерируются автоматически): свободной поверхности, поверхностных волн, свободной поверхностью, поверхностных волн течением, распространение поверхностных волн, свободной поверхности исходного, гашения волн подбором, Распространение поверхностных волн, исходного волнения, фаза исходных волн, фаза колебаний источника, уровня свободной поверхности, часть свободной поверхности, вещественной оси, соответствующих характеристик источника, величина заглубления источника, пути распространения волн, ординаты свободной поверхности, величину расхода источника, прошедшей волны.

Ключевые слова

поверхностные волны, гашение, источник

Обсуждение

Социальные комментарии Cackle
Задать вопрос