Анализ влияния прогиба от опалубочных работ при проведении СМР на примере монолитного железобетонного перекрытия. Влияние на порядок усиления конструкций внешним армированием | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 11 мая, печатный экземпляр отправим 15 мая.

Опубликовать статью в журнале

Автор:

Рубрика: Архитектура, дизайн и строительство

Опубликовано в Молодой учёный №19 (414) май 2022 г.

Дата публикации: 13.05.2022

Статья просмотрена: 99 раз

Библиографическое описание:

Удалов, Ю. М. Анализ влияния прогиба от опалубочных работ при проведении СМР на примере монолитного железобетонного перекрытия. Влияние на порядок усиления конструкций внешним армированием / Ю. М. Удалов. — Текст : непосредственный // Молодой ученый. — 2022. — № 19 (414). — С. 151-155. — URL: https://moluch.ru/archive/414/91395/ (дата обращения: 03.05.2024).



В статье производится анализ влияния прогиба от опалубочных работ при проведении СМР на примере конструкций перекрытия, влияние его на увеличение нагрузки и снижение несущей способности.

Ключевые слова: железобетон, армирование, обследование, прогиб, перекрытия, несущая способность, опалубка, внешнее армирование.

Совершенствование методики расчета прогибов изгибаемых железобетонных элементов, изготовленных из бетонов, в т. ч. сверхвысокой прочности, является актуальной задачей, что также определяет новизну и общую концепцию диссертационного исследования [7].

Для выбора наиболее рационального метода усиления конструкций перекрытий из монолитного железобетона необходимо учитывать вводные параметры конструкций. В данной статье производится анализ влияния прогиба от опалубочных работ при проведении СМР, влияние его на увеличение нагрузки и снижение несущей способности.

Рассмотрим железобетонное монолитное перекрытие пролётом 6 метров шириной 6 метров.

Перекрытие замоделировано толщиной 200 мм с классом бетона В25, несущие стены приняты толщиной 250мм с классом бетона В25.

Жесткостные характеристики элементов конструкции понижены с учетом коэффициентов, согласно п. 6.2.7 СП 430.1325800.2018 [3]:

– 0,6 для вертикальных сжатых железобетонных стен;

– 0,2 для несущего горизонтального перекрытия.

В соответствии с ГОСТ Р 54257–2010 «Надежность строительных конструкций и оснований. Основные положения и требования» класс сооружения принят КС-2. Коэффициент надежности по ответственности принят равным 1 [4].

Геометрические параметры железобетонной конструкции

Рис. 1. Геометрические параметры железобетонной конструкции

Расчетная схема железобетонной конструкции

Рис. 2. Расчетная схема железобетонной конструкции

Базовый прогиб конструкции перекрытия формируется за счёт собственного веса конструкции и прогиба формообразующей поверхности опалубки. Класс опалубки принят 2. Прогиб формообразующей поверхности опалубки не должен превышать l/400 (п. 6.1.5 ГОСТ 34329–2017) и равен 15 мм, для 6-метрового перекрытия [6, 8].

Дополнительный прогиб может появляться в соответствии с допусками на изготовление элементов опалубки. Отклонения вертикальных несущих элементов опалубки приняты h/800 (таблица 1 ГОСТ 34329–2017) и равны 2,75мм [6,8]. С учетом данных допусков общий первоначальный прогиб конструкции равен 17,75 мм. В рамках выполнения монолитных работ толщина перекрытия в центре увеличивается на 17,75мм, отсюда первоначальная нагрузка от собственного веса увеличивается.

В результате расчета перекрытия, получены результаты усилия момента (см. рисунок 3):

1) Для перекрытия с увеличенной толщиной в центре пролёта до 217,5 мм: от -1,74 т.*м. до 1,04 т.*м.

2) Для перекрытия без увеличения толщины в 17,5мм: от от -1,72 т.*м. до 0,91 т.*м.

Максимальные результаты полученных значений моментов в опорном участке и в пролёте

Рис. 3. Максимальные результаты полученных значений моментов в опорном участке и в пролёте

Полученные результаты свидетельствуют об увеличении усилия момента до 13 % в пролёте, незначительное увеличение момента происходит в опорной зоне, до 2 %.

При сравнительном анализе прогибов перекрытий от собственного веса, полученные результаты в обоих случаях не превышали 3,2 мм. в центре пролёта, -3.04 мм. и -3.16 мм. соответственно.

Для оценки полной несущей способности, в рамках выполнения работ по усилению, необходимо провести учёт всех нагрузок (см. таблицу 1) [1].

Таблица 1

Перечень принятых нагрузок

п/п

Наименование нагрузки

Нормативное значение кг/м 2

γ n

Нормативное значение с учетом γ n, кг/м 2

γ f

Расчетное значение, кг/м 2

1

2

3

4

5

6

7

Постоянные нагрузки

1

Собственный вес ж/б конструкций

(2500 кг/м 3 )

Учтен в «ПК SCAD»

1

Учтен в «ПК SCAD»

1,1

Учтен в «ПК SCAD»

Полезные нагрузки

2

Нагрузка в служебных помещениях административно — бытовых зданий.

200

1

200

1,2

240

Итого полезные нагрузки

200

1,2

240

Постоянные нагрузки от пирога перекрытия

3

Цементно — песчаная стяжка

δ ст = 100 мм

γ ст = 2400 кг/м3

240

1

240

1,3

312

4

Линолеум:

δ лин = 15 мм;

γ лин = 1600 кг/м 3

24

1

24

1,2

30

5

Потолок типа «Армстронг»

γ арм = 5 кг/м 2

5

1

5

1,2

6

Итого постоянные нагрузки от пирога перекрытия

269

1,2

348

Постоянные нагрузки от перегородок в линию (м.п.)

6

Перегородки кирпичные 250мм

γ арм = 1800 кг/м 3

1350

11

1350

1,2

1620

Итого нагрузки от перегородок

1350

1,2

1620

В результате расчета получены максимальные усилия изгибающих моментов в плите перекрытия без учета дополнительной толщины в 20мм (Рисунок 4), равные:

5,69 т.*м. в опорной зоне

3,41 т.*м. в пролёте

Полученные результаты изгибающих моментов в плите перекрытия

Рис. 4. Полученные результаты изгибающих моментов в плите перекрытия

В результате расчета получены максимальные усилия изгибающих моментов в плите перекрытия с учетом дополнительной толщины в 20мм (Рисунок 5), равные:

5,6 т.*м. в опорной зоне

2,98 т.*м. в пролёте

Полученные результаты изгибающих моментов в плите перекрытия

Рис. 5. Полученные результаты изгибающих моментов в плите перекрытия

Армирование принимается из арматуры Ø16 мм с шагом 200мм.

Защитный слой арматуры принят 25 мм в соответствии с требованиями СП 63.133330.2018 [2].

Разница усилий момента в пролёте составляет 13,45 % или 0,43 т*м.

Рассматриваемые защитные слои при выполнении расчета:

1) 25мм. — защитный слой арматуры проектный.

2) 45мм. — защитный слой арматуры с учетом увеличения сечения в середине пролёта на 20мм.

В результате выполненных расчетов (п.8.1.8–8.1.30 СП 63.13330.2018) несущая способность по предельному моменту, деформациям в сжатой зоне бетона обеспечены и деформациям в растянутой арматуре, обеспечена.

Длительная ширина раскрытия трещин согласно расчёту (п. 8.2.6, 8.2.15, 8.2.16) не обеспечена в обоих случаях (см. рисунок 6).

Коэффициент использования по ширине раскрытия трещин (длительная)

Рис. 6. Коэффициент использования по ширине раскрытия трещин (длительная)

Общая разница в коэффициенте использования по ширине раскрытия трещин составляет 13,28 %.

Выводы:

  1. Прогиб перекрытия от опалубочных работ в рамках строительных допусков увеличивает нагрузки на конструкции, что в свою очередь негативно сказывается на несущей способности перекрытия. Для рассмотренного примера увеличение изгибающих моментов выявлено в пределах до 13,3 %.
  2. В рамках выполненных расчетов стоит сделать вывод о необходимости контроля толщины перекрытия не реже чем через 1.5 метра (l/4). Помимо выполнения измерения толщины перекрытия, выполняемые зондажами перекрытия, следует рассматривать способы 3х мерного сканирования конструкций с получения наиболее полной картины деформаций и геометрии конструкций.
  3. Наиболее рациональный метод вывешивания 6-метровых перекрытий для разгрузки, при подготовке перед усилением внешним армированием конструкций перекрытий с двумя домкратами в 2ух точках пролёта.

Литература:

  1. СП 20.13330.2016 «Нагрузки и воздействия»
  2. СП 63.133330.2018 «Бетонные и железобетонные конструкции»
  3. СП 430.1325800.2018 «Монолитные конструктивные системы. Правила проектирования».
  4. СП 70.13330.2012 «Несущие и ограждающие конструкции»
  5. ГОСТ Р 54257–2010 «Надежность строительных конструкций и оснований. Основные положения и требования»
  6. ГОСТ 34329–2017 «Опалубка. Общие технические условия»
  7. Д. А. Панфилов диссертация на соискание ученой степени кандидата технических наук: «Совершенствование методики определения прогибов изгибаемых железобетонных конструкций с учетом трещинообразования»
  8. Т. В. Яшина, А. А. Алексеева «Опалубочные работы при возведении монолитных бетонных и железобетонных конструкций». Гомель 2018 г., 107с.
  9. С. М. Анпилов «Опалубочные системы для монолитного строительства». Издательство «Ассоциации строительных вузов», Москва 2005 г., 278 с.
  10. О. М. Шмит «Опалубки для монолитного бетона» перевод с немецкого Л. М. Айнгорн. Стройиздат Москва 1987 г., 156 с.
Основные термины (генерируются автоматически): SCAD, нагрузка, несущая способность, плита перекрытия, защитный слой арматуры, опорная зона, собственный вес, дополнительная толщина, железобетонная конструкция, формообразующая поверхность опалубки.


Похожие статьи

Обоснование применения облегченных монолитных...

Перекрытие служит несущей конструкцией и одновременно является диафрагмой

Минимальный защитный слой для монолитных конструкций согласно действующим нормам a

Несущая способность и жесткость многопустотных плит зависит от формы и размеров...

Особенности расчета сборно-монолитных перекрытий каркасных...

Железобетонные плиты несъемной опалубки выступают составной частью сборно-монолитного перекрытия, включают в себя

Толщина бетона омоноличивания — 100 мм. Для армирования несъемных элементов опалубки предполагается использовать горячекатаную...

Совместная работа железобетонных плит перекрытий...

Обратимся к композитным конструкциям из железобетонных плит и стальных балок. Объединение в совместную работу железобетонной плиты и стальных балок

Если этого не сделать, то несущие способности обоих элементов просто суммируются, тогда как несущая...

Расчет здания с гибким нижним этажом на сейсмическую нагрузку...

Вертикальные несущие конструкции в здании представлены монолитными железобетонными диафрагмами (стенами) и монолитными железобетонными

Расчёт несущих конструкций здания необходимо выполнить с помощью вычислительного комплекса SСАD версии 21.1.

Применимость программного комплекса SCAD для расчета...

Оценка состояния несущих конструкций каркасных зданий и сооружений является актуальной задачей особенно для промышленных зданий, особо опасных, технически сложных и уникальных объектов. Разрушение подобных сооружений может привести к катастрофам.

Усиление изгибаемых железобетонных элементов композитными...

В некоторых случаях для изгибаемых железобетонных конструкций возможно

— учитывается, что несущая способность конструкции достаточна для восприятия постоянной и

Рис. 7. Вертикальные деформации от собственного веса плиты с системой усиления из...

Расчет сечения сборно-монолитной конструкции в стадии...

Предварительно напряженная арматура- канаты класса К-7 Rs = 1250 МПа, Rs,ser

Сечение включает в себя: сборный преднапряженный ригель, сборную плиту-опалубку

В рамках настоящей работы выполнен расчет характерного сечения плиты перекрытия типового этажа.

Эффективность использования сталежелезобетонной плиты...

Нормативная временная нагрузка на перекрытие . Расчет перекрытия производился по двухпролетной неразрезной схеме для участка

На стадии бетонирования плиты, стальной профилированный настил выполняет функции опалубки и является несущей конструкцией...

Похожие статьи

Обоснование применения облегченных монолитных...

Перекрытие служит несущей конструкцией и одновременно является диафрагмой

Минимальный защитный слой для монолитных конструкций согласно действующим нормам a

Несущая способность и жесткость многопустотных плит зависит от формы и размеров...

Особенности расчета сборно-монолитных перекрытий каркасных...

Железобетонные плиты несъемной опалубки выступают составной частью сборно-монолитного перекрытия, включают в себя

Толщина бетона омоноличивания — 100 мм. Для армирования несъемных элементов опалубки предполагается использовать горячекатаную...

Совместная работа железобетонных плит перекрытий...

Обратимся к композитным конструкциям из железобетонных плит и стальных балок. Объединение в совместную работу железобетонной плиты и стальных балок

Если этого не сделать, то несущие способности обоих элементов просто суммируются, тогда как несущая...

Расчет здания с гибким нижним этажом на сейсмическую нагрузку...

Вертикальные несущие конструкции в здании представлены монолитными железобетонными диафрагмами (стенами) и монолитными железобетонными

Расчёт несущих конструкций здания необходимо выполнить с помощью вычислительного комплекса SСАD версии 21.1.

Применимость программного комплекса SCAD для расчета...

Оценка состояния несущих конструкций каркасных зданий и сооружений является актуальной задачей особенно для промышленных зданий, особо опасных, технически сложных и уникальных объектов. Разрушение подобных сооружений может привести к катастрофам.

Усиление изгибаемых железобетонных элементов композитными...

В некоторых случаях для изгибаемых железобетонных конструкций возможно

— учитывается, что несущая способность конструкции достаточна для восприятия постоянной и

Рис. 7. Вертикальные деформации от собственного веса плиты с системой усиления из...

Расчет сечения сборно-монолитной конструкции в стадии...

Предварительно напряженная арматура- канаты класса К-7 Rs = 1250 МПа, Rs,ser

Сечение включает в себя: сборный преднапряженный ригель, сборную плиту-опалубку

В рамках настоящей работы выполнен расчет характерного сечения плиты перекрытия типового этажа.

Эффективность использования сталежелезобетонной плиты...

Нормативная временная нагрузка на перекрытие . Расчет перекрытия производился по двухпролетной неразрезной схеме для участка

На стадии бетонирования плиты, стальной профилированный настил выполняет функции опалубки и является несущей конструкцией...

Задать вопрос