В статье приведены устройство и работа созданного биореактора для автомобиля «Нексия-3». По результатам испытаний были выбраны вариант добавления 50 %-го добавления водородного биогаза к обычной топливно-воздушной смеси и вариант 100 %-го добавления водородного биогаза в воздух.
Ключевые слова: автомобиль, водород, топливо, биогаз, биореактор, кислород, отход, резервуар, испытание , скорость, бензино-воздушная смесь, расход топлива, отработанный газ, содержание CO.
9 апреля 2021 года принято постановление Президента Республики Узбекистан № ПП-5063 «О мерах по развитию возобновляемой и водородной энергетики в Республике Узбекистан». Согласно которого на сегодняшний день меняется структура потребности в энергетических ресурсах, в частности при переходе от углеводородных ресурсов к возобновляемым источникам энергии актуальным становится вопрос развития водородной энергетики [1].
Для укрепления энергетической безопасности республики требуется создание необходимых условий для расширения возможностей использования возобновляемых источников энергии и стабильного развития водородной энергетики, включая усиление научного потенциала данной сферы. В целях создания инфраструктуры водородной энергетики республики, повышения результативности научных и практических изысканий в сферах возобновляемой и водородной энергетики, широкого внедрения инновационных технологий в производство, а также обеспечения перехода Республики Узбекистан к «зеленой» экономике.
Одним из направлений «зеленой» экономики является газификация, при которой происходит совмещенный процесс сжигания биомассы при недостатке кислорода с получением газообразных продуктов: монооксида углерода, водорода, метана, легких углеводородов, двуокиси углерода и азота. Продуктами газификации являются также жидкости (деготь, масла и другие конденсаты), уголь и зола. Первичные продукты газификации используются в качестве топлив или подвергаются дальнейшей переработке в метанол и другие химикаты.
По оценкам экспертов, ежегодно в регионах Узбекистана собираются 100 млн тонн отходов промышленности и 30 млн. м 3 бытовых отходов. При изучении их морфологического состава 5–10 % отходов приходилось на бумагу, древесные отходы; 20–45 % — еда; 3 % — металл; 5–10 % — текстильные отходы, кожа, резина; 2 % — стекло, а также пластмассовые отходы. Если эти отходы не утилизировать быстро, они нанесут вред атмосфере, водоемам, почве, продуктам питания, зданиям, предприятиям и многому другому [2].
На основе исследований был разработан реактор для получения и использования водородного топлива в сочетании с обычным биогазовым топливом [3]. Этот биореактор производит смесь газов водорода, кислорода и метана. Биореактор состоит из следующих основных элементов: резервуар для отходов (1); резервуар для воды (2); густая часть органической смеси (3); жидкая часть органической смеси (4); смесь водорода и биогаза (5); аккумуляторная батарея (6); очищенный водородный биогаз (7); горелка для горения (8); пластины электролиза (9).
Рис. 1. Схема устройства для получения водородного биогаза
Проведены сравнительные испытания в лабораторных и дорожных условиях для проверки эффективности биореактора.
Условия испытаний:
— смесь разбавленного навоза крупного рогатого скота;
— период брожения не менее 5 дней;
— блок питания 12 вольт (от аккумулятора);
— полигон: дорога с твердым покрытием;
— Климатические условия: умеренная температура;
— относительная влажность — 30 %;
— без снега и дождя, скорость ветра 7,5 м / с;
— атмосферное давление 735 мм рт.
— Температура воздуха + 23,5 0 С.
В экспериментах испытывалась Нексия-3 2020 года выпуска с общим пробегом 35 720 км. Двигатель автомобиля работал на трех видах топливно-воздушной смеси:
бензино-воздушная смесь (контроль);
контроль + 50 % водородный биогаз;
100 % водородный биогаз + воздух.
Результаты испытаний приведены в таблице. Добавление 50 % водородного биогаз и 100 % прямая подача с воздухом горючей смеси из устройства в цилиндры двигателя положительно повлияла на процесс сгорания, увеличив мощность двигателя на 20–30 %. При этом количество СО в выхлопных газах снизилось на 50–60 % [4].
Рис. 2. Устройство для получения водородного биогаза
Как видно из таблицы, опытной Нексии-3 потребовалось 10,6 секунды (контроль) для достижения скорости 100 км/ч при работе на обычной бензино-воздушной смеси. Когда в обычную бензиново-воздушную смесь был добавлен 50 % водородный биогаз, время разгона автомобиля до 100 км/ч увеличилось до 12,3 секунды, а при работе со 100 %-ным водородным биогазом автомобиль разогнался до 100 км/ч за 13,8 секунды [5].
Таблица
Влияние использования водородного биогаза на показатели автомобиля
№ |
Наменование показателей |
Ед. измереня |
Виды топливно-воздушной смеси |
||
Бензин-воздух (контроль) |
Контроль + 50 % водородный биогаз |
100 % водородный биогаз |
|||
|
Время разгона автомобиля до 100 км/ч |
сек |
10,6 |
12,3 |
13,8 |
|
Расход бензина |
л/100 км |
6,7 |
5,2 |
- |
|
Расход водородного биогаза |
м 3 /100 км |
- |
55,6 |
86,5 |
|
% |
3,24 |
2,37 |
1,78 |
|
|
Количество CН в отработанных газах |
% |
4,23 |
1,44 |
0,06 |
Однако выяснилось преимущества опытной Нексии-3 с точки зрения расхода топлива. Так, если автомобиль потреблял 6,7 литра топлива на 100 км при работе на обычной бензино-воздушной смеси, то при работе автомобиля с 50 %-ным добавлением водородного биогаза к обычной смеси расход бензина составлял 5,2 литра, а расход водородного биогаза составлял 55,6 м 3 .
При работе на 100 % ном водородном биогазе автомобиль не расходовал бензин, а расход водородного биогаза составил 86,5 м 3 на 100 км пути.
Содержание CO в выхлопных газах снизилось с 3,24 %, когда автомобиль работал на обычной бензиново-воздушной смеси, до 2,37 %, когда к стандартной смеси добавляли 50 % водородного биогаза, и до 1,78 % при работе на 100 % водородном биогазе.
Таким образом, при добавлении 50 % водородного биогаза к типичной бензиново-воздушной смеси потребление бензина сократилось на 32,4 %, а выбросы CO — на 33,3 %. При работе со 100 % водородным биогазом не было расхода бензина, а содержание CO снизилось на 42,4 %. Поэтому для дальнейших исследований были выбраны вариант добавления 50 % -ного добавления водородного биогаза к обычной смеси и 100 % ного добавления водородного биогаза в воздух.
Благодаря тому, что цена водородного биогаза в 5–6 раз дешевле бензина и в 3–4 раза дешевле сжатого газа, эксплуатационные расходы автомобиля снижаются в 1,5–2 раза.
Литература:
- Постановление Президента Республики Узбекистан № ПП-5063 «О мерах по развитию возобновляемой и водородной энергетики в Республике Узбекистан» от 9 апреля 2021 года.
- Дадабоев Р. М., Аббасов С. Ж. Перспективы использования водородного топлива в автомобилях// U55 Universum: технические науки: научный журнал. — № 3(84). Часть 2. М. Изд. «МЦНО», 2021.– 108 http://7universum.com/ru/tech/archive/category/384. DOI: 10.32743/UniTech.2021.84.3–2. с. 30–33.
- Насиров И. З., Аббосов С. Ж., Рахмонов Х. Н. Результаты испытания электролизера// U55 Universum: технические науки: научный журнал. — № 6(87). Часть 2. М. Изд. «МЦНО», 2021.– 108 с. 34http://7universum.com/ru/tech/archive/category/687. с. 31- DOI: 10.32743/UniTech.2021.68.7–2. с. 31–33.
- Насиров И. З., Аббосов С. Ж. Генераторларнинг автомобиль кўрсаткичларига таъсири// «Интернаука»: научный журнал- № 18(194). Часть 5. Москва, Изд. «Интернаука», 2021.- 88 с. 63–64 б.
- Насиров И. З., Рахмонов Х. Н., Аббосов С. Ж. Результаты испытания электролизера// U55 Universum: технические науки: научный журнал. — № 6(87). Часть 2. М. Изд. «МЦНО», 2021.– 108 с. 34.http://7universum.com/ru/tech/archive/category/687. DOI: 10.32743/UniTech.2021.68.7–2. с. 31–33.