Ключевые слова: дорожное строительство, золошлаковые отходы
По данным Росстата за 2017 год в Российской Федерации почти 40 % всей электроэнергии было выработано на тепловых электростанциях (ТЭС). При этом образовалось около 20 млн. т золошлаков, из которых утилизировано только 800 тыс. т, что составляет 4 %, причем ситуация с крайне низким уровнем утилизации многие годы остается неизменной [1]. Складирование такого объема золошлаковых материалов имеет негативные экологические аспекты: потребление воды, загрязнение почвы, сточные воды, отрицательное влияние на грунтовые воды, загрязнение воздуха при пылении отвалов. Поэтому решение проблемы утилизации золошлаков весьма актуально, особенно для Кузбасса.
Золошлаковые отходы теплоэлектростанций (ЗШО) — это твердые продукты сгорания углей, состоящие в основном из породообразующих компонентов. Минеральная часть угольного топлива на 85–95 % состоит из глинистых минералов, аргиллитов, алевролитов. Остальные 5–15 % — соединения, главным образом, железа, кальция и микроэлементов [2].
Золошлаковые отходы представляет собой мелкозернистый материал, у которого почти 30 % зёрен имеет размеры от 1 до 5 мм. Характеристики золошлаков различаются на разных ТЭС, так как определяются минералогическим составом угля, подготовкой топлива к сжиганию, технологией сжигания, системой очистки дымовых газов от золы и способом её транспортировки в золоотвалы.
Анализ зарубежного опыта показывает, что одной из наиболее перспективных сфер их утилизации может быть дорожное строительство, однако в России дорожники золошлаковые отходы используют крайне редко. Причем, дальше призывов к применению ЗШО и обвинений в нежелании решать проблему дело не идет. Необходима объективная оценка ситуации, которая позволит решить проблему.
В Западной Европе наиболее прогрессивной в решении проблемы применения отходов ТЭС для дорожного строительства считается Франция, где используется «сухое» удаление отходов. Вырабатываемая зола-уноса, в зависимости от своего состава и свойств, применяется для всех элементов дорожной конструкции, и может использоваться как для верхних слоев конструкции оснований в качестве компонента вяжущего, так и для нижних слоев как укрепленный минеральный материал. Также золошлаковые смеси (ЗШС) применяют в теле дорожной насыпи как техногенный грунт. Например, на севере Франции, в Ленс-ла-Бассе, трасса RN 47 длиной 7,5 км построена с использованием почти 50 000 тонн золы. Данная дорога почти на 70 % состоит из золы, и представляет собой пример эффективной утилизации ЗШО. Для организации процесса утилизации во Франции существуют государственные льготы для бизнеса, использующего золу, и введены запреты на использование других, более затратных строительных материалов, таких как грунт и песок. Поэтому почти сто процентов золы идет в дальнейшую переработку и утилизацию.
В США применяют для строительства золу-уноса и золу гидроудаления. Зола-уноса служит для замены портландцемента в бетонах и цементных растворах, а также заполнителем в дорожных основаниях и насыпях. Использование данного золы позволяет улучшить некоторые характеристики бетонов, в том числе повысить их прочность и увеличить долговечность готового бетонного изделия. Например, бетон, 50 % цемента которого заменили золой-уноса, называется бетоном с высокой концентрацией золы (HFC). Данный бетон обладает низким выходом температуры при гидратации, уменьшенной усадкой после высыхания и лучшей технологичностью. Зола гидроудаления утилизируется в качестве заполнителя для бетона и холодных асфальтобетонов, а также в качестве структурного заполнителя для насыпей и цементных оснований автомобильных дорог
Еще в 1983 г. в США были приняты нормы об обязательном применении зольных отходов в дорожном строительстве. Массовое использование золы в строительстве дорог началось с 1986 г. Сейчас, чтобы стимулировать более широкое использование продуктов сгорания угля, Федеральное агентство по охране окружающей среды, министерство энергетики и Федеральное управление автомобильных дорог, а также Американская ассоциация по производству золы угля и Группа по утилизации твердых бытовых отходов совместно спонсируют «Партнерство использования продуктов сжигания угля». Проект предназначен для того, чтобы помочь строительным организациям и энергетическим компаниям понять экологические преимущества и потенциальные последствия употребления продуктов сгорания угля в различных целях, а также стимулировать их полезное использование [5].
В Германии для продуктивного использования ЗШМ на многих электростанциях возводят силосы емкостью 40–60 тыс. т и обязательно строят небольшие силосы с суточной и двухсуточной ёмкостью, из которых впоследствии отбирают пробы для лабораторного анализа золы, и в которых она посредством технологических методов перемешивания и объёмного дозирования по фракционному составу приводится к необходимым нормативным требованиям, после чего зола загружается в основные силосы-хранилища. Побочные продукты ТЭС экспортируются в соседние страны. Для золы-уноса необходимо наличие сертификата о пройденных лабораторных испытаниях, если она идёт в стройиндустрию. Ежегодно в Германии 3,1 млн. т цемента заменяется ЗШО. Благодаря этому экономятся ресурсы и энергия, необходимая для производства цемента, а также окупаются затраты на силосы, транспорт и зарплату [7].
В Южной Африке золу-уноса усиливали различными видами цементов и утилизировали в качестве стабилизатора грунта для дорожного строительства. Результаты специальных исследований показали, что зола-уноса, обогащенная цементом, не является вредной для человека и окружающей среды. Кроме того, доказано, что смеси золы-уноса с инертными материалами (песок, рисовая шелуха и т. д.) достигают от 50 до 70 % прочности материалов, укрепленных цементом. В целом эксплуатация золы-уноса для стабилизации грунтов в дорожном строительстве имеет технические преимущества при правильном использовании. Сегодня в ЮАР, при финансовой государственной поддержке, проводится экспериментальное строительство трасс из золы-уноса [3].
Однако утилизация золошлаков в строительстве имеет проблемы технического и организационного характера. Зола неоднородна по своему составу и размеру, а строительная промышленность определяет чёткие требования к данным параметрам. Также, из-за неоднородности своего происхождения, в составе ЗШО могут находиться нежелательные для различных производств компоненты. К примеру, использование золошлаковых отходов в изготовлении пористых заполнителей лимитируется содержанием серы, углерода, оксидов железа, кальция и магния. В фабрикации кирпича нормируются оксиды кальция, серы, алюминия.
Для большинства производств требуется сухой материал, а в золоотвале он всегда влажный, что также добавляет трудностей строительным организациям. ЗШО, получаемые при сжигании углей различного происхождения, имеют разнящийся минералогический и химический состав и, поэтому, вынуждают подбирать индивидуальный процесс обработки и рациональный вид эксплуатации. Эти процессы подразумевают трудоёмкие лабораторные и заводские испытания [4].
Для определения влияния ЗШО на глинистые грунты Кемеровской области, в испытательной лаборатории ООО «Кузбасский центр дорожных исследований» (с применением поверенных средств измерений и аттестованного в установленном порядке испытательного оборудования) были проведены опыты по укреплению глинистых грунтов при помощи золошлаковой смеси Новокемеровской ТЭЦ и цемента М400 ЦЕМ II/A-Ш 32,5Б Топкинского завода.
Для испытаний использовалась мелкозернистая золошлаковая смесь гидроудаления (ЗШС) из отвала Новокемеровской ТЭЦ с оптимальной влажностью 33,35 % (по ГОСТ 22733–2016) и суглинок тяжелый пылеватый (получен на строительстве автомобильной дороги Ленинск-Кузнецкий — Кемерово, км 255 — км 274). Физико-механические показатели суглинка, укрепленного золошлаковой смесью, приведены в табл. 1. испытания проведены в возрасте 28 суток по ГОСТ 23558–94.
Таблица 1
Наименование пробы |
Прочность на сжатие воздушно-сухих образцов, МПа |
Прочность образцов на сжатие, подверженных полному водонасыщению втечение 48 ч, МПа |
Водостойкость образцов при полном водонасыщении |
Водонасыщение образцов при полном водонасыщении,% |
Суглинок тяжелый пылеватый, укрепленный ЗШС (расход 15 % от массы грунта) |
0,54 |
Образцы испытание не выдержали (при полном водонасыщении полностью разрушились) |
||
Суглинок тяжелый пылеватый, укрепленный ЗШС (расход 20 % от массы грунта) |
0,56 |
|||
Суглинок тяжелый пылеватый, укрепленный ЗШС (расход 25 % от массы грунта) |
0,58 |
0,33 |
0,66 |
0,71 |
В результате испытаний установлено, что применение ЗШС в качестве стабилизатора оказывает незначительное влияние на прочностные показатели грунта. Укрепленные образцы не достигли показателей минимальной марки по прочности на сжатие по ГОСТ 23558–94. В то же время, образцы грунта, укрепленного 15 % и 20 % ЗШС, не обладают стойкостью к воздействию воды (теряют форму и разрушаются при полном насыщении водой), в отличие от образцов грунта, укрепленного 25 % ЗШС, которые при водонасыщении незначительно теряют прочностные характеристики и сохраняют форму при воздействии воды.
Результаты испытаний суглинка тяжелого пылеватого, укрепленного золошлаковой смесью и цементом марки 400 ЦЕМ II/A-Ш 32,5Б, приведены в табл. 2 (испытания выполнены по ГОСТ 23558–94; ГОСТ 22733–2016).
Таблица 2
Содержание золошлаковой смеси (ЗШС) ицемента (в% от массы грунта) |
Прочность на сжатие воздушно-сухих образцов, МПа |
Прочность на сжатие, после водонасыщения втечение 48 ч, МПа |
Водостойкость образцов при полном водонасыщении |
Водонасыщение образцов при полном водонасыщении,% |
ЗШС — 15, цемент — 5 |
8,59 (М75) |
5,09 (М40) |
0,59 |
3,85 |
ЗШС — 15, цемент — 10 |
10,52 (М100) |
6,34 (М60) |
0,60 |
2,84 |
ЗШС — 15, цемент — 15 |
11,34 (М100) |
6,84 (М60) |
0,60 |
4,91 |
ЗШС — 20, цемент — 5 |
8,17 (М75) |
4,58 (М40) |
0,56 |
4,59 |
ЗШС — 20, цемент — 10 |
13,79 (М100) |
5,91 (М40) |
0,43 |
4,90 |
ЗШС — 20, цемент — 15 |
16,66 (М100) |
6,91 (М60) |
0,41 |
6,07 |
ЗШС — 25, цемент — 5 |
6,79 (М60) |
5,10 (М40) |
0,75 |
3,15 |
ЗШС — 25, цемент — 10 |
12,26 (М100) |
7,35 (М60) |
0,60 |
3,45 |
ЗШС — 25, цемент — 15 |
16,22 (М100) |
13,89 (М100) |
0,86 |
2,59 |
Из табл. 2 видно, что применение для укрепления грунтов золошлаковых смесей и цемента в качестве стабилизатора оказывает положительное влияние на прочностные характеристики грунтово-золошлаковой смеси. Все укрепленные образцы суглинка, при использовании цемента, обладают стойкостью к воздействию воды (не теряют форму и не разрушаются при полном насыщении водой), в отличие от образцов грунта, укрепленного 15 % и 20 % ЗШС, которые при воздействии воды теряют форму и прочностные характеристики.
Таким образом, установлено, что применение цемента и ЗШС оказывает положительное влияние на свойства грунта и грунта, укрепленного только золошлаковой смесью в объеме до 20 %. Наибольшей прочностью в сухом состоянии обладают образцы, укрепленные 20 % ЗШС и 15 % цемента, однако эти же образцы обладают наименьшей водостойкостью. Наибольшей водостойкостью и прочностью в водонасыщенном состоянии обладают образцы, укрепленные 25 % ЗШС и 15 % цемента.
С учетом проведенного эксперимента и мирового опыта можно предложить следующие меры по активизации применения золошлаковых отходов в дорожном строительстве Кузбасса:
- Поскольку себестоимость производства электроэнергии включает транспортирование, складирование и хранение золошлаковых отходов, ТЭС должны отпускать их потребителям бесплатно, что следует установить на законодательном уровне.
- С целью сокращения объемов золоотвалов (и связанных с ними затрат) энергетикам может быть выгодно взять на себя часть затрат на транспортирование ЗШО. Вопрос можно решить специальными соглашениями Администрации области, энергетиков и дорожников.
- Необходимо выполнить региональные исследования по изучению строительных свойств ЗШО основных ТЭС Кузбасса для предоставления проектным организациям необходимой информации.
- На региональном уровне обязать проектные организации предусматривать использование ЗШМ в проектах автомобильных дорог. Например, с использованием золоотвалов Кемеровской ГРЭС и Новокемеровской ТЭЦ вполне можно возвести земляное полотно Северного обхода г. Кемерово, строительство которого предполагается начать в ближайшие годы.
- Необходимо предусмотреть меры экономической поддержки дорожных организаций, применяющих ЗШО, и их экономического стимулирования.
- В современных условиях применять отходы практически не допускается: дорожные работы следует выполнять с применением строительных материалов, которые должны обладать набором строго нормированных характеристик (зерновой состав, морозостойкость и т. д.), поэтому тепловые электростанции должны предлагать на рынок именно строительные материалы (шлаковый щебень, песок и т. д.), а не отходы.
Литература:
- Официальная статистика по окружающей среде // Росстат. URL: http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/environment/ (дата обращения: 07.04.2019).
- Борисенко Л. Ф. Перспективы использования золы угольных тепловых электростанции. — М.: Геоинформмарк, 2001. — 68 с.
- Brooks R. M. Soil stabilization with fly ash and rice husk ash. // International Journal of Research and Reviews in Applied Sciences. — 2009. — Vol. 1(3). — P. 209–217.
- Самусева М. Н., Шишелова Т. И. Золошлаковые материалы — альтернатива природным материалам // Фундаментальные исследования. — 2009. — № 2. — С. 75–76;
- Lindon K. A. Properties and use of coal fly ash: Use of fly ash for road construction, runways and similar projects. — London, 2015. — 132 p.
- Мелентьев В. А. Состав и свойства золы и шлаков ТЭС. — Л.: Энергоатомиздат, 1985. — 185 с.
- Hinweise zur Verwendung von Braunkohlenflugasche aus Kraftwerken mit Kohlenstaubfeue-rung im Erdbau// Forschungsgesellschaft für Straßen und Verkehrswesen. — 2003. — №.627. — S. 150–153
- ОДМ 218.2.031–2013 Методические рекомендации по применению золы-уноса и золошлаковых смесей от сжигания угля на тепловых электростанциях в дорожном строительстве — М: Росавтодор, 2015. — 64 с.