Исследование сжигания угля в плазменно-циклонной топливной системе | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 25 января, печатный экземпляр отправим 29 января.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №4 (15) апрель 2010 г.

Статья просмотрена: 918 раз

Библиографическое описание:

Басаргин, А. П. Исследование сжигания угля в плазменно-циклонной топливной системе / А. П. Басаргин. — Текст : непосредственный // Молодой ученый. — 2010. — № 4 (15). — С. 59-65. — URL: https://moluch.ru/archive/15/1390/ (дата обращения: 16.01.2025).

В современных условиях особую актуальность приобретает вопрос ресурсосбережения. Постоянный рост цен на жидкое топливо, обусловленный сокращением природных запасов нефти, являющейся сырьем для нефтеперерабатывающей промышленности, заставляет искать другие энергетические источники. Дефицит нефти оказывает прямое воздействие на стоимость природного газа, запасы которого, в случае большого спроса, будут исчерпаны не менее быстрыми темпами, чем нефтяные ресурсы.

Особую важность данный вопрос приобретает в региональном аспекте. В Забайкальском крае нет нефтяных и газовых месторождений, способных обеспечить топливом существующие газомазутные энергетические котлы. Наличие последних в нашем регионе объясняется сопоставимой стоимостью мазута и угля на момент установки оборудования при более высокой эффективности газомазутных котлов. Вместе с тем, на указанной территории существуют значительные угольные месторождения, способные вытеснить газовое и мазутное топливо из энергетического баланса региона.

Эти обстоятельства приводят к необходимости замены газо-мазутных котлов на котлы, работающие на твердом топливе. Однако отсутствие инвестиций в энергетику и свободных денежных средств у энергетических компаний не позволяет это осуществить.

Сжигание твердого топлива существующими способами в газомазутных котлах требует значительной их реконструкции по двум основным причинам: тепловое напряжение топочного объема при горении газового или мазутного топлива намного выше, чем при горении твердого топлива; отсутствие системы золоудаления в газомазутных котлах.

Преодоление указанных трудностей возможно путем внедрения технологии, позволяющей интенсифицировать процесс горения твердого топлива и обеспечить удаление минеральных примесей без серьезной модернизации газомазутных котлов.

Анализ существующих способов сжигания твердого топлива показал, что наибольшие возможности для интенсификации сжигания возникают при использовании циклонного процесса. Благодаря особой аэродинамической структуре потока в циклонной камере складываются исключительно благоприятные условия для тепло- и массообмена между газом и частицами топлива, а также удалением золы. Однако чувствительность к качеству топлива и повышенное образование оксидов азота затрудняют внедрение циклонного процесса сжигания твердого топлива.

Устранение недостатков циклонного способа сжигания возможно применением электротермохимической подготовки топлива, позволяющей значительно интенсифицировать процесс воспламенения и горения топлива без использования дополнительного высокореакционного топлива при пониженном образовании вредных выбросов. Дополнительный экологический эффект может быть получен при использовании добавки к топливу природного адсорбента – цеолита, поглощающего вредные газообразные выбросы. Предварительная электротермохимическая подготовка топлива и последующее вихревое сжигание угля в циклонной камере в совокупности образуют плазменно-циклонный процесс. Организация плазменно-циклонного процесса осуществляется в плазменно-циклонной топливной системе (ПЦТС) (рис. 1).

Рис. 1. Пример исполнения плазменно-циклонной топливной системы

Процесс горения твердого топлива в ПЦТС состоит из сложного комплекса явлений: взаимодействие плазменной струи с потоком аэросмеси и воспламенение, движение двухфазного потока, тепло- и массообмена, горения в объеме камеры и на поверхности ее стенок. При этом каждое явление обусловлено взаимовлиянием друг на друга. Поэтому создание и решение единой системы уравнений, описывающей плазменно-циклонный процесс, является весьма сложной задачей. В связи с этим для математического моделирования процесса целесообразно использовать ступенчатый метод расчета. Этот метод предполагает разбиение ПЦТС на две ступени. Первой ступенью переработки твердого топлива в ПЦТС является электротермохимическая подготовка топлива, второй ступенью – сжигание этого топлива в циклонной камере. Исходя из этого, алгоритм расчета, реализующий ступенчатый метод расчета, состоит из пяти блоков (рис. 2). Первый блок – исходные данные. Задается необходимая тепловая мощность системы или расход топлива. Вводятся характеристики угля, рассчитываются, по стандартным зависимостям, объемы продуктов сгорания и необходимое количество воздуха. Задается температура вторичного воздуха. Во втором блоке производится расчет ЭТХПТ. На основании термодинамического и кинетического расчета определяется оптимальная температура ЭТХПТ, при которой происходит стабилизация выхода горючих компонентов. Оцениваются удельные энергозатраты на процесс ЭТХПТ, определяется мощность плазмотрона и параметры на выходе из камеры, а также геометрия камеры ЭТХПТ.

Рис. 2. Алгоритм расчета плазменно-циклонной топливной системы

Третий блок предназначен для определения геометрических характеристик циклонной камеры. На основе известных значений теплонапряжения сечения циклонных камер и данных первого и второго блоков рассчитывается определяющий размер – диаметр циклонной камеры и остальные характерные размеры. В четвертом блоке осуществляется расчет аэродинамических характеристик циклонной камеры по зависимостям, предложенным Э.Н. Сабуровым и С.В. Карповым. Конечным результатом расчета этого блока является определение значения коэффициента сопротивления циклонной камеры.

В пятом блоке производится расчет тепловых потоков по уравнениям теплового баланса, которые составлены с учетом рекомендации КазНИИ энергетики. Расчет производится итерационным методом при задаваемых температурах пленки жидкого шлака и газа на выходе. В итоге определяется истинное теплонапряжение сечения камеры и возможна коррекция геометрии (диаметра циклонной камеры). Завершающим этапом расчета является оценка перепада давления в циклонной камере с учетом неизотермичности процесса.

Представленная методика расчета ПЦТС реализована на ЭВМ в системе «Mathcad». Положительными чертами методики является простота и наглядность при достижении, достаточной для инженерных расчетов, точности.

Отсутствие опытных данных по сжиганию угля в плазменно-циклонных камерах, а также влияние добавки цеолита к топливу при вихревом сжигании, побудили произвести собственные экспериментальные исследования.

Опыты осуществлялись на базе Отраслевого центра плазменно-энергетических технологий (ОЦ ПЭТ) РАО «ЕЭС России». Целью эксперимента являлось доказательство существования и снятие параметров плазменно-циклонного процесса, а также определения влияния добавки цеолита на режим горения и образование вредных выбросов. Для достижения указанной цели была создана лабораторная экспериментальная установка по сжиганию пылеугольного топлива в плазменно-циклонной топливной системе (рис. 3).

В качестве топлива использовался бурый уголь Окино-Ключевского месторождения. Для совместного сжигания использовался цеолит Шивыртуйского месторождения Забайкальского края. Коэффициент избытка воздуха составлял 1,02. Для проведения эксперимента применялись стандартные методики, основанные на фиксации временного и температурного режимов, а также состава уходящих газов. Экспериментальное исследование проходило в два основных этапа. Первый этап – достижение устойчивого воспламенения и горения топлива. Отслеживание температурного режима посредством термопар и тепловизора. При выходе на стационарный режим фиксация состава уходящих газов. Второй этап – сжигание пылеугольного топлива с массовой добавкой цеолита от 5% до 30% с шагом 5%. Отслеживание температурного режима; фиксация состава уходящих газов при помощи газоанализатора.

В результате первого этапа эксперимента установлено следующее. После запуска плазмотрона и прогрева установки произвели подачу топлива в плазменно-циклонную камеру. Параметры в начальный период фиксировались каждые тридцать секунд. Воспламенение топлива произошло в первую минуту после подачи топлива. В последующие тридцать секунд продолжался набор температуры. Время выхода на стационарный режим работы экспериментальной установки, при котором установились постоянная температура горения, составило полторы минуты.

Рис. 3. Схема экспериментальной установки: 1- плазмотрон; 2- плазмомуфель; 3- циклонная камера;
4- котел-утилизатор; 5-дутьевой вентилятор первичного и вторичного воздуха; 6- бункер пылевидного топлива с питателем; 7- трубопровод первичного воздуха; 8- трубопроводы вторичного воздуха; 9- дымосос; 10- дымовая труба; 11- дутьевой вентилятор вторичного воздуха и охлаждения уходящих газов; 12- газоход; 13- измерительные отверстия; 14- охлаждаемый отбор газов для анализа; 15- трубопровод охлаждающей воды

В результате первого этапа эксперимента установлено следующее. После запуска плазмотрона и прогрева установки произвели подачу топлива в плазменно-циклонную камеру. Параметры в начальный период фиксировались каждые тридцать секунд. Воспламенение топлива произошло в первую минуту после подачи топлива. В последующие тридцать секунд продолжался набор температуры. Время выхода на стационарный режим работы экспериментальной установки, при котором установились постоянная температура горения, составило полторы минуты.

Устойчивое воспламенение и горение топлива в плазменно-циклонной топливной системе свидетельствует о правильном подборе соотношения топливо-воздух. При дальнейшем сжигании топлива ожидался выход жидкого шлака, чего, однако не произошло. Это можно объяснить малой (45%) загрузкой циклонной камеры и отсутствием предварительного подогрева воздуха. Не смотря на это, набранный температурный режим в дальнейшем оставался неизменным даже при сжигании топлива с цеолитом. Это подтверждает предположение об устойчивости плазменно-циклонного процесса сжигания топлива.

Золоулавливание в циклонной камере достигает 95%. Для обеспечения устойчивого выхода жидкого шлака необходима загрузка циклонной камеры свыше 50%, и (или) предварительный подогрев воздуха. Лабораторные исследования шлака показали наличие механического недожога 0,9%. При образовании шлаковой пленки ожидается снижение механического недожога.

Содержание оксида углерода при установившемся режиме не превышало 5 мг/м3. Химический недожог при этом достигает 1,3%. Снижение химического недожога может быть достигнуто повышением коэффициента избытка воздуха до 1,08–1,1.

Содержание диоксидов серы в дымовых газах при стационарном режиме находилось на уровне 108 мг/м3. Традиционно высокое для циклонных топок содержание оксидов азота (800 мг/м3) в уходящих газах, при сжигании угля в экспериментальной установке, на стационарном режиме работы, составило 464 – 487, мг/м3, и определялось, в основном, монооксидом азота.

В результате второго этапа эксперимента установлено следующее. Сжигание угольно-цеолитовой смеси каждого состава производилось несколько минут таким образом, чтобы можно было зафиксировать изменение не только состава газов, но и температурного режима. Измерение состава уходящих газов показало следующее. Содержание диоксидов серы в дымовых газах находилось на уровне 108 мг/м3, и практически не изменялось при добавлении цеолита. Это можно объяснить малым содержанием серы () в топливе. Содержание оксида углерода не превышало 5 мг/м3. Анализ результатов измерения концентрации оксидов азота показал, что при сжигании угольно-цеолитовой аэросмеси заметное уменьшение оксидов азота в дымовых газах началось с 10% добавки цеолита, и составило 60 мг/м3 на каждые последующие 10% добавки (рис. 4).

Результаты измерения температуры показали, что набранный, при сжигании чистого угля, температурный режим в дальнейшем оставался практически неизменным даже при сжигании топлива с массовой добавкой цеолита вплоть до 30%. Это объясняется устойчивостью плазменно-циклонного процесса сжигания топлива: стабильное воспламенение топлива обеспечивает его электротермохимическая подготовка, а в циклонной камере, за счет высокой турбулизации потока происходит активное выгорание топлива.

Рис. 4. График зависимости содержания оксидов азота в дымовых газах от массовой добавки цеолита к топливу

Технология сжигания угля в плазменно-циклонной топливной системе обладает следующими основными особенностями, определяющими область ее применения:

– возможность использования угля любого качества;

– автономность процесса без использования второго вида высокореакционного топлива;

– эффективное сжигание топлива, характеризующееся полнотой выгорания и невысоким химическим недожогом;

– сепарационный эффект циклонной камеры, обеспечивающий безпылевой газовый поток на выходе из камеры и удаление минеральной части в расплавленном виде;

– невысокие вредные выбросы.

Исходя из этих особенностей, можно выделить два основных направления применения разрабатываемой технологии: энергетическое и энерготехнологическое
(рис. 5).

В энерготехнологической сфере представленная технология может быть использована для расплава и термической обработки материалов.

В энергетической сфере использование ПЦТС возможно: при создании новых и модернизации имеющихся угольных котлов; при переводе газомазутных котлов на сжигание угля.

 

Организационная диаграмма

Рис. 5. Схема применения технологии сжигания угля в плазменно-циклонной топливной системе

При создании новых угольных котлов экономический эффект от внедрения рассматриваемой технологии создается за счет снижения расхода топлива и массогабаритов котлоагрегатов при невысоких вредных выбросах. Оснащение существующих пылеугольных котлоагрегатов ПЦТС приведет к снижению расхода топлива. Кроме этого, удаление в циклонной камере расплавленной минеральной части топлива повысит надежность работы поверхностей нагрева котла.

Основной же эколого-экономический эффект при внедрении разрабатываемой технологии ожидается от замещения мазута углем. Экономический эффект от перевода мазутных котлов на уголь обусловлен снижением стоимости используемого топлива. Экологический эффект достигается за счет снижения выбросов диоксидов серы.

Для оценки эффективности инвестиционного проекта по переводу газомазутного котла на уголь использовался метод, имитирующий в динамике основные денежные потоки, возникающие в процессе реализации проекта. При этом в качестве экологического показателя выступала плата за выбросы вредных веществ. Особенности технологии сжигания угля в плазменно-циклонной топливной системе позволяют производить замещение мазута углем в газомазутных котлах при минимальной их реконструкции, которая заключается в замене штатных горелочных устройств на ПЦТС. Количество ПЦТС на котел определяется удобством компоновки, аэродинамикой топки котла и глубиной регулирования. Мощность ПЦТС выбирается исходя из производительности модернизируемого котла. Замена топлива повлечет изменение объема дымовых газов, и соответственно, необходимость в замене или модернизации тягодутьевых машин. Твердые частицы, не уловленные в ПЦТС, частично удаляются в штатных пылеуловителях, которыми оснащаются мазутные котлы, тем самым, обеспечивая высокую степень золоулавливания.

Перевод газомазутного котла на уголь, помимо элементов технологии сжигания угля в мазутных котлах, потребует создание нового топливно-транспортного хозяйства и системы золоудаления, включающие склад угля, дробилки, бункеры, питатели угля, мельницы, устройства топливоподачи, элементы системы золоудаления, золоотвал.

Для примера произведена оценка эколого-экономической эффективности модернизации газомазутного котла КВГМ-30-150М при переводе его на сжигание пылеугольного топлива. С целью обеспечения диапазона регулирования котла (30 – 100%), сохранения аэродинамики топки и удобства размещения, котел оснащается двумя плазменно-циклонными топливными системами, расположенными встречно на боковых стенках топочной камеры. Единичная мощность ПЦК составляет 17,5 МВт.

Рис. 6. Динамика изменения индекса доходности при различной постоянной нормы дисконта

Большая часть капиталовложений приходится на создание топливно-транспортного хозяйства – 91,87%. Производственные затраты на установку ПЦТС составляют лишь 8,13%. Удельные капиталовложения на единицу мощности котлоагрегата составляют 1825,4 (тыс. руб.)/МВт. Удельный годовой экономический эффект от перевода водогрейного котла КВГМ-30-150М на сжигание угля на единицу мощности котлоагрегата составляет 2707,1 (тыс. руб. в год)/МВт. Топливная составляющая эффекта 99,62%, экологическая 0,37%.

Индекс доходности при постоянной норме дисконта 15% равен 9,2 (рис. 6). Внутренняя норма доходности 120%. Срок окупаемости капиталовложений, даже при пессимистическом варианте, не превышает 2 лет.

Таким образом, проделанное исследование позволяет сделать следующие выводы:

1. Анализ существующих способов сжигания твердого топлива показал, что наибольшие возможности для интенсификации сжигания угля возникают при совместном использовании электротермохимической подготовки топлива и циклонного способа сжигания.

2. Разработана методика расчета плазменно-циклонной топливной системы, основанная на расчете ЭТХПТ, геометрии и аэродинамики камеры, тепловых потоков ПЦТС. Методика реализована на ЭВМ в системе «Mathcad». В результате расчета определяются основные данные, необходимые для конструирования и поверки плазменно-циклонных топливных систем.

3. Экспериментом подтверждена возможность сжигания пылеугольного топлива в плазменно-циклонной топливной системе при обеспечении экологической безопасности. Плазменно-циклонный процесс обладает хорошей устойчивостью, даже при наличии в топливе минеральных компонентов свыше 40%.

4. Добавление цеолита к топливу приводит к снижению оксидов азота. Добавление от 10% до 30% цеолита позволяет снизить содержание оксидов азота с 464 до 329 мг/м3 соответственно. Влияние добавки цеолита на другие составляющие уходящих газов не выявлено. Изменение температурного режима при добавлении цеолита не наблюдалось.

5. Технология сжигания угля в плазменно-циклонной топливной системе может иметь целый ряд приложений. Эффективность ее внедрения зависит от различных факторов, характеризующих каждую конкретную ситуацию. Основной экономический эффект при внедрении разрабатываемой технологии ожидается от замещения мазута углем.

Основные термины (генерируются автоматически): циклонная камера, плазменно-циклонная топливная система, твердое топливо, котел, температурный режим, плазменно-циклонный процесс, газ, подача топлива, пылеугольное топливо, сжигание угля.


Похожие статьи

Исследование углубленной холодильной камеры в регулируемой газовой среде с использованием нетрадиционных источников энергии

Термогазодинамический расчет газотурбинной силовой установки

Разработка и исследование автономных cистем тепло- и хладоснабжения с использованием вихревых установок

Исследование гидромеханического теплогенератора для ветроэнергетической установки

Оценка экологической эффективности использования горючих газов как топлива для ДВС с искровым зажиганием

Увеличение долговечности тяжелонагруженных деталей транспортных машин методом конвекционно-индукционной химико-термической обработки

Эффективность энергоснабжения электросталеплавильного производства энергетическим источником на базе паротурбинного цикла

Моделирование переходных процессов в системе энергоустановки и выхлопной шахты

Моделирование и исследование тепломассообменных процессов в холодильной камере при естественной и вынужденной конвекции

Теплотехнический расчет углубленного плодоовощехранилища с регулируемой газовой средой

Похожие статьи

Исследование углубленной холодильной камеры в регулируемой газовой среде с использованием нетрадиционных источников энергии

Термогазодинамический расчет газотурбинной силовой установки

Разработка и исследование автономных cистем тепло- и хладоснабжения с использованием вихревых установок

Исследование гидромеханического теплогенератора для ветроэнергетической установки

Оценка экологической эффективности использования горючих газов как топлива для ДВС с искровым зажиганием

Увеличение долговечности тяжелонагруженных деталей транспортных машин методом конвекционно-индукционной химико-термической обработки

Эффективность энергоснабжения электросталеплавильного производства энергетическим источником на базе паротурбинного цикла

Моделирование переходных процессов в системе энергоустановки и выхлопной шахты

Моделирование и исследование тепломассообменных процессов в холодильной камере при естественной и вынужденной конвекции

Теплотехнический расчет углубленного плодоовощехранилища с регулируемой газовой средой

Задать вопрос