Библиографическое описание:

Овсянников Е. М., Овсянников В. Е. К вопросу применения САПР для оценки состояния несущих конструкций машиностроительных цехов // Молодой ученый. — 2010. — №3. — С. 36-38.

В данной статье рассмотрены вопросы применения систем автоматизированного проектирования для автоматизации оценки состояния несущих конструкций машиностроительных цехов.

Несущие конструкции машиностроительных цехов (подкрановые пути, колонны и т.д.) испытывают воздействие постоянных и циклических нагрузок, а также различных других факторов (температурного воздействия, колебаний грунта и т.д.), что приводит к постепенной потере прочности и разрушению. Отсюда следует, что для предотвращения возможных чрезвычайных ситуаций необходимо осуществлять постоянный мониторинг состояния и оценку устойчивости и прочности данных конструкций. Специалисты ООО «Ремэкс» проводят визуально-измерительные обследования несущих конструкций цехов различных производств (кузнечно-прессового, литейного, механосборочного и т.д.), по результатам которых можно оценить степень изношенности на качественном уровне. Наиболее частым видом повреждений являются трещины. Пример такого повреждения приведен на рис. 1:

 

Рис. 1. Пример трещины в бетонной колонне

 

Однако для того, чтобы оценить устойчивость и прочность конструкции одного только качественного обследования мало – необходимо его определить расчетным путем. Основные теоретические положения, касающиеся расчетов таких конструкций изложены в теории упругости [2] и сопротивлении материалов [1]. Ввиду большого объема вычислений возникла необходимость в приобретении пакета САПР, позволяющего проводить данные виды расчетов.

После анализа программных продуктов, предлагаемых отечественными и зарубежными поставщиками, выбор был остановлен на системе прочностного анализа Structure CAD Office. Система SCAD Office представляет собой набор программ, предназначенных для выполнения прочностных расчетов и проектирования строительных конструкций различного вида и назначения. Данная система была выбрана, прежде всего, потому, что она сертифицирована Госстроем РФ и Госатомнадзором РФ на соответствие нормативной документации, регламентирующей проведение работ в данной области.

В состав SCAD Office входят программы нескольких видов [3]:

·          вычислительный комплекс Structure cad (SCAD), является универсальной расчетной системой конечно-элементного анализа конструкций и ориентирован на решение задач проектирования зданий и сооружений достаточно сложной структуры;

·          вспомогательные программы, предназначенные для «обслуживания» SCAD и обеспечивающие форматирование и расчет геометрических характеристик различного вида сечений стержневых элементов (Конструктор сечений, КОНСУЛ, ТОНУС, СЕЗАМ), определение нагрузок и воздействий на проектируемое сооружение (ВеСТ), вычисление коэффициентов постели, необходимых при расчете конструкций на упругом основании (КРОСС), импорт данных из архитектурных систем и формирование укрупненных моделей (препроцессор ФОРУМ);

·          проектно-аналитические программы (КРИСТАЛЛ, АРБАТ, ЗАПРОС, ДЕКОР, КАМИН, ОТКОС), предназначенные для решения частных задач проверки и расчета стальных и железобетонных конструкций в соответствии с требованиями нормативных документов (СНиП, СП), расчета элементов оснований и фундаментов, расчетов и проверок элементов каменных и армокаменных конструкций на соответствие требованиям СНиП;

·          проектно-конструкторские программы (КОМЕТА, МОНОЛИТ), предназначенные для разработки конструкторской документации на стадии детальной проработки проектного решения;

·          электронные справочники (КоКон, КУСТ).

 

Вычислительный комплекс SCAD включает развитые средства подготовки данных, расчета, анализа результатов и не имеет ограничений на размеры и форму проектируемых сооружений. Тем не менее, для инженера-проектировщика во многих случаях важными являются «простые» задачи, решение которых занимает заметную часть времени. К таким задачам можно отнести проверку сечений элементарных балок, сбор нагрузок на элементы конструкций, определение геометрических характеристик составных сечений. Для решения этих задач и разработаны дополнительные программы-сателлиты. Вместе с вычислительным комплексом они составляют систему SCAD Office.

При разработке программ-сателлитов разработчиками была предусмотрена общность в представлении данных, способах управления, используемых формах проверки нормативных требований и показе результатов таких проверок, документировании работы. При этом любая из программ, входящих в систему SCAD Office, может использоваться в автономном режиме.

В частности, для расчета несущих конструкций используется модуль КАМИН. Приведем пример оценки устойчивости и прочности колонны, представленной на рис. 1. Исходные данные для расчета приведены в таблице 1 и на рис. 2.

Таблица 1

Исходные данные для расчета

Камень

Кирпич глиняный пластич. прессования

Марка камня

35

Раствор

цементный с минеральными пластификаторами

Марка раствора

4

Возраст кладки

Более 5 лет

Нормативный срок службы

25 лет

Механические повреждения конструкции

Трещины с раскрытием до 2 мм, пересекающие не более восьми рядов кладки (длиной до 60-65 см).

 

Рис. 2. Расчетная схема колонны

Ширина планки 50 мм

Шаг планок 400 мм

Толщина планки 6 мм

Уголок L63x6 (Уголок равнополочный по ГОСТ 8509-93)

Уголок из стали с расчетным сопротивлением Ry  = 23445.464 Нм2.

Результаты расчета приведены в таблице 2, диаграмма взаимодействий приведена на Рис. 3.

Таблица 2

Результаты расчета конструкции.

Проверено по СНиП

Проверка

Коэффициент использования

п. 5.38 Пособия к СНиП II-22-81, п. 5.45 Руководства   к СНиП II-B-2-71

Устойчивость в плоскости эксцентриситета при внецентренном сжатии

0.105

п. 5.38 Пособия  к СНиП II-22-81, п. 5.45 Руководства   к СНиП II-B-2-71

Устойчивость из плоскости эксцентриситета при центральном сжатии

0.1

 

Рис. 3. Диаграмма взаимодействий

Согласно проведенным в модуле КАМИН расчетам и построенной диаграмме взаимодействий можно сделать вывод о том, что прочность и устойчивость колонны, приведенной на рис. 1 удовлетворителен. Для проверки точности полученных результатов аналогичные расчеты были проведены вручную, которые показали достаточно высокую сходимость результатов (около 85%), что вполне достаточно для выполнения технических расчетов.

Заключение. В период с 2005 по 2010 год специалистами ООО  «Ремэкс» было обследовано большое количество несущих конструкций, работающих в самых различных условиях и применение систем автоматизированного проектирования полностью себя оправдало. Трудоемкость расчетов в среднем снизилась на 60%, что позволило более качественно производить экспертизу зданий и сооружений.

 

Библиографический список

1.             Прочность, устойчивость, колебания: Справочник в 3-х томах/ под. ред. И.А. Биргера. – М.: Машиностроение, 1968 г.

2.             Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Учеб. пособие для ВУЗов в 10 т. Т. VII. Теория упругости. – 5-e изд., стереот. – М.: ФИЗМАТЛИТ, 2003. – 264 с.

3.             http://www.scadgroup.com.

Основные термины (генерируются автоматически): несущих конструкций, SCAD Office, несущих конструкций машиностроительных, конструкций машиностроительных цехов, состояния несущих конструкций, систему scad office, оценки состояния несущих, несущих конструкций цехов, расчета несущих конструкций, несущих конструкций технологической, систем автоматизированного проектирования, количество несущих конструкций, прочности данных конструкций, Система SCAD Office, состав scad office, конечно-элементного анализа конструкций, конструкций различного вида, конструкции машиностроительных цехов, Вычислительный комплекс scad, расчете конструкций.

Обсуждение

Социальные комментарии Cackle
Задать вопрос