Автор: Октаева Елизавета Владиславовна

Рубрика: Экономика и управление

Опубликовано в Молодой учёный №15 (119) август-1 2016 г.

Дата публикации: 31.07.2016

Статья просмотрена: 1280 раз

Библиографическое описание:

Октаева Е. В. Математические модели и методы оценки рисков // Молодой ученый. — 2016. — №15. — С. 310-313.



В статье описываются существующие математические модели и методы оценки рисков. Область математического моделирования распространилась в экономической науке очень активно, что позволяет более глубоко проводить исследования. Риск-менеджмент также требует точного обоснования принимаемых решений о значимости какого-либо риска, что возможно при проведении точных количественных расчетов, в том числе математического моделирования.

Ключевые слова: риск-менеджмент, принятие решений, математическое моделирование, оценка рисков

Для оценки рисков используются количественные и качественные методы оценки. Математическое моделирование относится к группе количественных методов. Качественные методы позволяют дать комплексную оценку вероятности наступления риска и ущерба от его реализации, однако недостатком является то, что необходимо привлекать компетентных экспертов. Количественные методы являются, в свою очередь более трудоемкими, но позволяют определить несколько альтернатив для принятия решений.

К количественным методам относят следующие виды расчетных методов (Рис. 1):

Рис. 1. Методы количественной оценки рисков

Статистические методы количественной оценки наиболее часто используются для оценки рисков (регрессионный анализ, метод средних величин и др.). Данные методы основаны на расчете вероятности наступления случайного события. Достоинством статистических методов является простота расчетов, недостатком — для достоверности необходимо наличие большого количества ретроспективной информации.

Логико-вероятностные методы применяются сравнительно недавно. В экономике данная группа методов используется чаще всего в банковской сфере. С помощью этих методов созданы вероятностная, логическая и структурная модели кредитного риска, а также вычислена цена за риск кредита и меры риска.

Метод аналогий, согласно названию, основан на анализе баз данных об оценке рисков объектов-аналогов. Обязательным условием применения данного метода является сопоставимость информации исследуемого объекта с аналогичным. Этот метод обычно используется для оценки рисков часто повторяющихся событий или объектов.

Аналитическая группа методов чаще используется для оценки инвестиционных и инновационных проектов и подразделяется на две подгруппы: методы без учета распределения вероятности (стресс-тестирование) и методы с учетом распределения вероятностей (нетрадиционные методы).

Математические модели и методы относятся к аналитической группе методов. Основная цель применения математического моделирования в оценке рисков сводится к описанию общей модели: R = f (P, I), где P — вероятность наступления рискового события, I — потенциальные последствия влияния факторов [1, с. 25].

Использование математических моделей в зависимости от постановки задачи и наличия исходной информации можно свести к применению таких типов моделей, как детерминированные, стохастические, лингвистические и игровые.

Игровые (нестохастические) модели используются тогда и только тогда, когда отсутствует исходная информация для использования других типов моделей. На основе теории игр формируются несколько исходов при осуществлении риска, и с помощью статистических и стратегических игр определяется значение меры или вероятности риска.

Лингвистические модели основаны на методах нечеткой логики. Неопределенность описывается функцией принадлежности, благодаря которой не требуется уверенность в повторяемости событий. Предполагается, что для использования данных методов имеется экспертная оценка о степени неопределенности.

Стохастические модели базируются на применении статистических расчетов и наличии достаточного количества статистической информации о каком-либо событии. С помощью стохастических моделей на заданном множестве оценивается вероятность наступления риска, данные модели применяются при условии случайности возникновения факторов риска.

С помощью детерминированных моделей определяется наиболее достоверный результат, поскольку данные модели применимы в условиях, когда факторы возникновения риска определены и носят регулярный характер и последствия принимаемых решений приводят к определенному результаты. Для формирования моделей используются инструменты математического анализа, логики и др. [1, с. 26].

Для количественной оценки рисков часто используются такие аналитические методы, как анализ чувствительности и имитационное моделирование, поскольку данные методы применяются в том числе и для комплексной оценки эффективности (устойчивости) деятельности организации.

Анализ чувствительности предполагает анализ изменения результирующего показателя при малом изменении факторов. Если изменения факторов приводят к незначительным изменениям результатов, то риск незначительный. Однако, недостатком метода является то, что в процессе проведения анализа исключаются все факторы, кроме одного, что не дает возможности комплексно оценить результаты.

Для оценки возможных последствий от наступления какого-либо события используется имитационное моделирование. Имитационные методы основаны на пошаговом нахождении значения результирующего показателя путем проведения многократных опытов с моделью [1, с. 26]. В ходе процесса имитации строятся последовательные сценарии с использованием переменных модели (факторов неопределенности). На основании этих данных можно сделать вывод об уровне возможного ущерба [2].

Результатом количественной оценки риска является показатель. Виды количественных показателей риска зависят от наличия достаточного количества информации. (Рис. 2) [1, с. 26].

Информация для анализа привлекается из различных доступных достоверных источников. Одним из видов наиболее полной и достоверной информации является внутренняя отчетность организации, которая также является и статистической.

C:\Users\OktaevaEV\Desktop\Screenshot_1.jpg

Рис. 2. Система показателей оценки риска

Условия определенности предполагают наличие полной информации об анализируемом объекте. Здесь чаще всего используется нормативная документация, внутренняя отчетность организации, справочники и другие достоверные показатели. В этих условиях применяются показатели абсолютные, относительные и средние. Абсолютные показатели выражаются в стоимостной или в материально-вещественной форме. Относительные показатели отражают результат сравнения возможных потерь с некоторой базой. Эти показатели могут рассчитываться непосредственно через коэффициенты, ориентированные на последствия рискового события или опосредованно через финансовые показатели (коэффициенты ликвидности, платежеспособности, рентабельности и т. д.) [1, с. 42]. Средние показатели используются в качестве обобщающих, в них отражаются действующие причины возникновения риска, факторы риска и закономерности. [1, с. 49].

При частичной неопределенности информация о рисковой ситуации отражается в виде частот появления рисковых событий. В данном случае риск рассматривается как вероятностная категория. Для количественной оценки риска применяются методы теории вероятностей и математической статистики. Вероятностные показатели являются мерой наступления рискового события и его последствий. Особую роль в использовании данных показателей играет закон распределения вероятностных величин. Статистические показатели характеризуют меру средних ожидаемых значений результатов деятельности и их возможных отклонений.

Условия полной неопределенности проявляются при полном отсутствии информации о рисковой ситуации, и тогда для ее получения привлекаются эксперты, с помощью которых разрабатываются индивидуальные показатели оценки.

Можно сделать вывод, что любые методы количественной оценки имеют свои достоинства и недостатки. Для комплексной оценки рисков необходимо комбинировать методы как качественного, так и количественного анализа, причем в конкретной ситуации сравнивать ограничения и возможности применения каждого из методов.

Литература:

  1. Уродовских В. Н. Управление рисками предприятия: Учеб. пособие. — М.: ВЗФЭИ, 2009. — 130 с.
  2. Слабинский С. В. Особенности оценки рисков в производственной деятельности промышленных предприятий [Электронный ресурс]. — Режим доступа: http://science-bsea.narod.ru
Основные термины (генерируются автоматически): оценки рисков, количественной оценки, методы оценки рисков, оценки риска, методы количественной оценки, количественной оценки рисков, количественной оценки риска, наступления риска, качественные методы оценки, наступления рискового события, вероятности наступления риска, возникновения риска, показателей оценки риска, комплексной оценки, оценке рисков, комплексной оценки рисков, Методы количественной оценки, Статистические методы количественной, Особенности оценки рисков, вероятность наступления риска.

Обсуждение

Социальные комментарии Cackle
Задать вопрос