Библиографическое описание:

Чапкина Н. А., Голикова Л. А. Формирование кредитного портфеля коммерческого банка с использованием вероятностных методов [Текст] // Актуальные вопросы экономических наук: материалы Междунар. науч. конф. (г. Уфа, октябрь 2011 г.). — Уфа: Лето, 2011. — С. 61-64.

Одним из основных направлений деятельности коммерческих банков является выдача кредитов, которая с одной стороны - наиболее доходная операция, с другой стороны – наиболее рискованная. Выдавая кредиты, банк непосредственно формирует свой кредитный портфель.
Представляется, что кредитный портфель банка – это совокупность предоставленных коммерческим банком кредитов, классифицируемых по определенным критериям, связанных с факторами кредитного риска, различным категориям заемщиков с учетом предъявляемых им требований.
Формирование кредитного портфеля коммерческого банка – это основной этап реализации его кредитной политики. Сформулировав основную цель кредитной деятельности банка, разработав стратегию кредитной политики, следует приступать к формированию кредитного портфеля. В настоящее время состояние кредитного портфеля позволяет судить не только о качестве кредитной политики банка, но и прогнозировать результат кредитной деятельности на будущее.
В последнее время все более актуальным стоит вопрос о качестве кредита и кредитного портфеля. Как утверждает большинство авторов [2, с. 75], качество характеризует эффективность формирования кредитного портфеля банка с позиции доходности, степени кредитного риска и обеспеченности. Здесь нетрудно проследить простую взаимосвязь: качество ссуды будет высоким, если наблюдается рост доходности и обеспеченности ссуды и снижение вероятности ее невозврата. Следует отметить, что это характерно для анализа качества не кредитного портфеля в целом, а для отдельного кредита.
Для анализа качества кредитного портфеля используют как качественные, так и количественные показатели: уровень ликвидности, уровень доходности, обеспеченность, степень и вид кредитного риска (следует учитывать финансовое положение заемщика, качество обслуживания долга и др.).
Казакова О.Н. [2, с. 75] отмечает, что такой показатель как обеспеченность для оценки качества кредитного портфеля использовать нецелесообразно, поскольку степень обеспеченности по каждому кредиту различна. Эффективнее использовать показатели совокупного кредитного риска, т.е. риск всего кредитного портфеля и доли размера созданного резерва на возможные потери по ссудам в кредитном портфеле.
В настоящее время сформированной и устоявшейся системы показателей кредитного портфеля банка, а также единой методики формирования эффективного кредитного портфеля не существует. Органами надзора ведется оценка кредитного портфеля в целом в рамках системы страхования вкладов (Указание ЦБ РФ от 16 января 2004 г. № 1379-У «Об оценке финансовой устойчивости банках в целях признания ее достаточности для участия в системе страхования вкладов») оценки экономического положения банков (Указание ЦБ РФ от 30 апреля 2008 г. № 2005-У «Об оценке экономического положения банков»), а также с помощью нормативов, заложенных в Инструкции ЦБ РФ от 16 января 2004 г. № 110-И «Об обязательных нормативах банков». В них показатели, характеризующие кредитный портфель, можно свести в три группы. Эти показатели используются Банком России и при оценке кредитного портфеля банковского сектора в целом.
Однако, в методике, разработанной Фатьяновой А.А. [5, с. 5], предлагается расширить их за счет следующих показателей:
  • группа доходности (коэффициент доходности, показатель доли доходов от кредитов, уровень доходности розничного кредитного портфеля, показатель эффективности кредитования с позиции акционера);
  • группа ликвидности (коэффициент ликвидности розничного кредитного портфеля, показатель средневзвешенного срока их размещения, коэффициент оборачиваемости кредитных вложений);
  • группа кредитного риска (коэффициент риска розничного кредитного портфеля, показатель степени защиты банка от совокупного кредитного риска).
В последнее время достаточно широкий круг научных работ посвящен принципам построения моделей формирования и оптимизации кредитного портфеля и возможности адаптации их к решению существующих проблем.
В связи с этим, например, Сорокиной И. [4, с. 15] предложены методические подходы к анализу и оценке кредитного портфеля банка на основании общедоступных форм банковской отчетности, где особое внимание уделено коэффициентному анализу кредитной деятельности банка. Но, несмотря на это, данная методика может быть использована в основном для внешних пользователей.
В частности, в работах Бабешко Л.О. [1], Попова В.Б. [3], Фатьяновой А.А. [5] предлагается использовать портфельную (вероятностную) модель Г. Марковица, адаптированную к формированию оптимального кредитного портфеля с учетом основных характеристик, которыми являются доходность, степень кредитного риска и т.д.
Проблема формирования оптимального кредитного портфеля при наличии жестких ограничений по суммам имеющихся в наличии свободных кредитных ресурсов, их стоимости, процентным ставкам на предоставляемые кредиты, срокам привлечения ресурсов, максимальному размеру кредита на одного заемщика является главной и постоянной операцией, которую выполняют специалисты банка. От правильности этих решений зависит финансовая стабильность банка. Серьезные проблемы с ликвидностью, которые могут испытывать банки, требуют повышения эффективности технологического процесса управления формированием активных и пассивных операций. Для этого необходимо привлечение современных математических методов анализа данных, в частности, весьма эффективно применение вероятностных методов.
Множество факторов (уровень инфляции, ставка рефинансирования ЦБ РФ, срок и сумма кредита и т.д.), от которых зависит конкретное значение доходности кредитного портфеля, безусловно, определяется общим состоянием экономики, что дает возможность считать показатель доходности в определенном смысле случайной величиной, для описания которой используются следующие вероятностные характеристики: математическое ожидание и дисперсия, которые могут интерпретироваться как ожидаемая доходность и мера риска.
Рассмотрим как один из возможных подходов к формированию эффективного кредитного портфеля коммерческого банка, а именно вероятностный [1, с. 92].
В представленной ниже блок-схеме (рисунок 1) отражены основные этапы проведения расчета эффективного кредитного портфеля коммерческого банка с учетом вероятностного подхода.
В нашем исследовании мы исходили из того, что число состояний экономики (S) конечно и каждому из них приписывается некоторое положительное число – вероятность данного состояния (p), удовлетворяющая условию (1):

Врезка1

где S = (s1, … sK); pk, k = 1, … K.
В качестве объекта исследования выступает кредитный портфель коммерческого банка (розничный, корпоративный), включающий n видов кредитов (потребительский кредит, автокредит, жилищный кредит, кредитные карты, овердрафт и др.), и определяется для него ожидаемая доходность и дисперсия как мера риска.
В качестве доли кредитных продуктов рассматривается показатель xi.
Доходность кредитного портфеля коммерческого банка (Dp) определяется как средневзвешенное значение доходностей кредитных продуктов, включенных в кредитный портфель с учетом их долей (хi).

Врезка3Врезка2



Врезка4



Врезка5

Врезка6

Врезка8Врезка9Врезка7


Врезка12Врезка11Врезка10

Врезка17Врезка16Врезка15Врезка14Врезка13

Врезка18


Врезка23Врезка20Врезка21Врезка19Врезка22


Врезка25Врезка24



Рис.1 – Алгоритм расчета эффективного кредитного портфеля коммерческого банка с учетом вероятностного подхода

В связи с тем, что использовался вероятностный подход, были определены вероятностные характеристики кредитного портфеля, в частности: ожидаемая доходность (mp); дисперсия доходности как мера риска (); среднее квадратическое отклонение ; показывающее отклонение текущей величины доходности от ожидаемой; коэффициент ковариации (Vik), характеризующий степень зависимости доходностей двух кредитных продуктов; коэффициент корреляции (rik), характеризующий степень линейной зависимости доходностей различных кредитных продуктов; коэффициент вариации (Сp), показывающий оценку предпочтительности.
Следует отметить, что в процессе выдачи кредита возможны следующие ситуации:
  1. получение наибольшей ожидаемой доходности при наименьшем риске. В этом случае вступает в действие правило доминирования: при одинаковом уровне ожидаемых доходностей из всех возможных вариантов кредитования предпочтение отдается наименьшему риску; при равной степени риска предпочтение отдается большей ожидаемой доходности;
  2. в случае сравнения кредитов с разными ожидаемыми доходностями и разными рисками используем оценку предпочтительности;
  3. доходности кредитных продуктов взаимозависимы или независимы, что оценивается с помощью коэффициента корреляции. В этом случае для снижения степени кредитного риска необходимо применять диверсификацию.
Однако в зависимости от индивидуальной склонности к риску кредитор может предпочесть вариант с большей ожидаемой доходностью, но с другой стороны связанный и с большим риском, либо вариант с меньшей ожидаемой доходностью, но менее рискованный.
Таким образом, данная методика имеет, на наш взгляд, следующие достоинства, позволяющие:
  1. определить уровень ожидаемой доходности, как отдельных кредитных продуктов, так и кредитного портфеля в целом;
  2. контролировать риски, а именно, уровень потерь, связанных с изменением доходности кредитов;
  3. установить степень зависимости доходностей отдельных кредитных продуктов через ковариацию и коэффициент корреляции;
  4. рассмотреть возможные ситуации в отношении уровня ожидаемой доходности и кредитного риска, т.е. использовать правила доминирования, эффект предпочтения и диверсификацию кредитного портфеля коммерческого банка,
что дает возможность использовать указанную выше методику в нашем исследовании для принятия управленческих решений в отношении формирования эффективного кредитного портфеля банка, учитывая уровень доходности и степень кредитного риска.

Литература:

  1. Бабешко Л.О. Математическое моделирование финансовой деятельности: учебное пособие / Л.О. Бабешко. – М.: КНОРУС, 2009.
  2. Казакова О.Н. Качество кредита и кредитного портфеля / О.Н. Казакова // Банковское дело. – 2009. - № 7. – С. 74-77.
  3. Попов В.Б. Эволюционные стратегии формирования оптимального кредитного портфеля финансовых предприятий / В.Б. Попов // Ученые записки Таврического национального ун-та им. В.И. Вернадского. Серия «Экономика и управление». Том 24 (63). - 2011 – № 1. – С. 164-181.
  4. Сорокина И.О. Методические подходы к анализу и оценке кредитного портфеля банка внешними пользователями / И.О. Сорокина // Банковское дело. – 2008. - № 42 (330). – С. 15-25.
  5. Фатьянова А.А. Анализ методов моделирования управления кредитным портфелем / А.А. Фатьянова // Социально-экономическое развитие России: Проблемы, поиски, решения: Научный сборник по итогам научно-исследовательской работы в 2001 г. Саратов: СГСЭУ, 2002. – С. 4-6.
Основные термины (генерируются автоматически): кредитного портфеля, кредитного портфеля коммерческого, кредитного риска, портфеля коммерческого банка, кредитного портфеля банка, эффективного кредитного портфеля, оценке кредитного портфеля, качества кредитного портфеля, оптимального кредитного портфеля, розничного кредитного портфеля, Формирование кредитного портфеля, совокупного кредитного риска, степени кредитного риска, степень кредитного риска, доходности кредитного портфеля, формирования эффективного кредитного, кредитных продуктов, формирования оптимального кредитного, формирования кредитного портфеля, формированию кредитного портфеля.

Обсуждение

Социальные комментарии Cackle