Библиографическое описание:

Хоробрых М. А., Фролов В. А. Проектирование экспериментальной установки для весового эксперимента в аэродинамической трубе // Молодой ученый. — 2013. — №3. — С. 116-122.

1 Весы аэродинамические

Весы аэродинамические — установка или система для измерения составляющих аэродинамических сил и моментов, действующих на модель в аэродинамической трубе. Каждая составляющая воспринимается отдельным измерительным каналом — компонентом. Аэродинамические весы могут иметь от одного до шести компонентов. По принципу действия аэродинамические весы подразделяются на механические и электрические (тензометрические).

Механические аэродинамические весы состоят из жёсткой рамы (расположена за границами потока аэродинамической трубы) и связанных между собой рычажных систем, удерживающих её в положении равновесия; выходные звенья рычажных механизмов соединены с измерительными приборами. Модель устанавливается на раме с помощью стоек или растяжек; имеется также механизм дистанционного изменения углов установки модели. В процессе эксперимента усилие, развиваемое выходным звеном какой-либо. рычажной системы, пропорционально одноимённой составляющей аэродинамической силы или момента, действующей на модель. Измерение усилия осуществляется при помощи автоматических коромысловых весовых элементов с подвижными грузами либо электрическими динамометрами. В том и другом случаях значение усилия преобразуется в электрический сигнал с целью его регистрации и дальнейшей обработки на электронно-вычислительной машине. Полный диапазон измерения механических весов разбивается на ряд поддиапазонов. Погрешность весов, приведённая к 0,05 %.

Электрические аэродинамические весы состоят из упругого тела, чувствительных элементов и преобразователей деформации чувствительных элементов (обычно тензорезисторных) в электрический сигнал. Чувствительные элементы выполнены вместе с телом и ориентированы так, чтобы деформация элемента, вызванная соответствующей составляющей аэродинамической силы или момента, была максимальной. Различают два типа электрических аэродинамических весов — с вынесенными чувствительными элементами и с элементами, расположенными внутри модели. Для измерения всего диапазона возможных значений составляющих аэродинамической силы и момента, реализуемых в данной аэродинамической трубе, обычно требуется ряд аэродинамических весов. Погрешность электрических аэродинамических весов, приведённая к диапазону, составляет 0,3–0,5 %.

2 Аэродинамическая труба

2.1 Основные параметры трубы

Аэродинамическая труба Т-3 СГАУ (Рисунок 1) является трубой малых скоростей, замкнутого типа с открытой рабочей частью. Коэффициент поджатия сопла равен 6 (отношение площади поперечного сечения форкамеры к площади рабочей части). Рабочая часть трубы открытая, длиной 1 м. Поперечное сечение сопла прямоугольное 0.4х0.6м, со скошенными углами. Для перемещения исследуемой модели рабочая часть оборудована a — b механизм. Диапазон перемещения модели по углу α [-10°;+20°], по углу β [-20°;+45°]. Поток в рабочей части трубы создаётся центробежным вентилятором, ротор которого представляет собой крыльчатку. Скорость потока задается до 50 м/с за счет изменения числа оборотов двигателя вентиляторной установки. Минимальная скорость, которая может поддерживаться автоматизированной системой 2 м/с.

Рис. 1. Состав аэродинамической трубы


2.2 Воздушный тракт

Воздушный тракт трубы (рисунок 2) состоит из сопла, открытой рабочей части, входного диффузора, обратного канала с поворотными коленами, форкамеры с хонейкомбом и сеткой.

Рис. 2. Воздушный тракт трубы


Поток в рабочей части трубы создаётся центробежным вентилятором, ротор которого представляет собой крыльчатку. В контуре имеются 4 поворотные колена. За рабочей частью расположен входной двухконтурный диффузор, который представляет собой расширяющийся канал, обеспечивающий торможение потока с наименьшими потерями и, тем самым, эффективное превращение кинетической энергии в энергию давления. В корпусе диффузора выполнены инжекторные регулируемые окна, предназначенные для снижения пульсаций потока. Сетка служит для детурбулизации воздушного потока на входе в вентилятор. Обратный канал представляет собой канал переменного сечения с поворотными коленами и вентиляторным отсеком. В первом поворотном колене располагаются профилированные направляющие лопатки, разворачивающие поток на 90° и уменьшающие завихрения потока на поворотах. Во втором — диаметральный вентилятор сварной конструкции. В третьем и четвертом поворотных коленах также имеются профилированные направляющие лопатки. За четвертым поворотным коленом в форкамере установлен металлический хонейкомб, служащий для выравнивания потока по направлению и представляющий собой сотовый блок из стальных пластин. За хонейкомбом стоит специальная детурбулизирующая сетка, которая гасит возмущения и уменьшает неравномерности распределения скорости потока по сечению форкамеры.

2.3 Привод и вентилятор

Поток в рабочей части трубы создаётся центробежным вентилятором, ротор которого представляет собой крыльчатку. Вентилятор приводится в движение электродвигателем постоянного тока мощностью 45 кВт. Для питания электродвигателя используется тиристорные преобразователь ТЕ4–100/460 дополненый системой принудительного воздушного охлаждения. Система управления питанием электродвигателя имеет обратную связь по частоте вращения. В качестве задатчика оборотов используется ЦАП установленый в управляющей ПЭВМ.

3 α-β механизм

α-β-механизм (рисунок 3) предназначен для установки модели в рабочей части аэродинамической трубы, с требуемыми углами атаки α и скольжения β. Величины углов α и β задаются программно. Основой механизма является основание и корпус с вертикальной осью вращения. Для крепления тензовесов имеется стальной кронштейн, который жестко связан с зубчатым колесом. Электрожгут связи тензовесов с измерительной системой проложен в канале, находящемся под обтекателем. Диапазон перемещений модели по углу α [-10°;+20°], по углу β [-20°;+45°]. Перемещения α-β-механизма осуществляются двумя двигателями постояного тока типа ДП-50. Для контроля скорости вращения двигатели оснащены тахогенераторами.

3.1 Средства измерения

Аэродинамические тензовесы состоят из упругого тела, чувствительных элементов (профрезерованных соответствующим образом балок) и преобразователей деформаций (мосты тензорезисторов) в электрический сигнал. Чувствительные элементы выполнены вместе с телом тензовесов как одно целое и ориентированы так, чтобы деформации элементов, вызванные соответствующей составляющей аэродинамической силы или момента, были максимальными.

Рис. 3. Аэродинамические тензовесы


Конструкция тензовесов такова, что позволяет измерять силы и моменты относительно заданной точки. Эта задача для Y, Mz и для Z, My решается при помощи двух упругих элементов установленных так, что по отношению друг к другу они выполняют роль кинематического элемента. При этом центральный стержень подвергается поперечному изгибу и воспринимает на себя большую часть силы. Наружные элементы являются звеньями упругого параллелограмма и совершают поступательное движение. Пара сил момента воспринимается наружными элементами, нагружаемыми силами противоположного знака. При этом центральный стержень играет роль упругого шарнира, относительно которого происходит поворот звена.

4 Проектирование математической модели

Для проектирования был выбран профиль GA(W)-1 [1]. Ниже приведены координаты профиля GA(W)-1 в процентах от зависимости от хорды профиля.

Рис. 4. Координаты профиля GA(W)-1


При выбранное хорде b = 200 мм, получаем координаты (таблица 1).

Таблица 1

Координаты профиля GA(W)-1 при b = 200 мм

Yb

YH

x

0,000

0,000

0,000

2,600

-1,948

0,400

4,070

-2,888

1,000

6,138

-4,104

2,500

8,330

-5,382

5,000

9,948

-6,382

7,500

11,200

-7,138

10,000

13,122

-8,418

15,000

14,618

-9,4

20,000

15,818

-10,174

25,000

16,826

-10,852

30,000

17,696

-11,4

35,000

18,418

-11,852

40,000

19,556

-12,53

50,000

20,338

-12,896

60,000

20,818

-13,034

70,000

21,000

-12,966

80,000

20,912

-12,688

90,000

20,538

-12,182

100,000

19,834

-11,366

110,000

19,348

-10,792

115,000

18,748

-10,122

120,000

18,026

-9,356

125,000

17,208

-8,53

130,000

16,288

-7,66

135,000

15,278

-6,766

140,000

14,192

-5,86

145,000

13,034

-4,922

150,000

11,826

-4,06

155,000

10,582

-3,174

160,000

9,288

-2,382

165,000

7,966

-1,704

170,000

6,626

-1,13

175,000

5,278

-0,704

180,000

3,930

-0,496

185,000

2,574

-0,514

190,000

1,208

-0,792

195,000

-0,148

-1,566

200,000


Зная координаты верхней и нижней поверхности профиля построим контур профиля (рисунок 5).

Рис. 5. Контур профиля


Проектирование модели крыла с вихревыми ячейками проводилось в программном пакете SolidWorks [2]. Программный комплекс SolidWorks предназначен для автоматизации работ промышленного предприятия на этапах конструкторской и технологической подготовки производства изделий любой степени сложности и назначения. Специализированные модули программного комплекса решают задачи на этапе производства и эксплуатации.

Ниже приведены результаты проектирования модели профиля крыла в разобранном виде и в сборе.

Рис. 6. Разобранная модель (вид спереди)


Рис. 7. Разобранная модель (вид сзади)


Рис. 8. Собранная модель (вид сзади)


Рис. 9. Собранная модель (вид спереди)


5 3D-печать

До недавнего времени процесс проектирования и изготовления аэродинамических моделей занимал до нескольких недель, а порой и месяцев. Процесс изготовления аэродинамических моделей во многом совпадает с более общим процессом, имеющим место в промышленности, который имеет название «прототипирование». Процесс прототипирования это создание объектов по их компьютерной 3D-модели. Сфера разработки и изготовления макетов находится в постоянном развитии, что способствует появлению новых инструментов и приёмов.

Пожалуй, самым ярким примером такого развития является технология быстрого прототипирования (Rapid Prototyping) или как её ещё называют ‒ 3D-печать. С помощью 3D-принтеров можно в кратчайшие сроки создать образцы практически любых объектов, в том числе макеты зданий, промышленных конструкций, элементов сложных механизмов и многое другое.

Достигается это за счёт так называемого процесса «наращивания» объекта с использованием специальных компонентов по заранее подготовленной компьютерной 3D-модели.

Данный метод изготовления моделей является более быстрым, точным и недорогим по сравнению с традиционным методом изготовления аэродинамических моделей.

3D-принтеры компании Z Corporation [3] отличаются от конкурентных мировых аналогов высокой производительностью, хорошей цветопередачей и наименьшей стоимостью изготовления прототипов.

Рис. 10. 3D-принтер компании Z Corporation


Ниже приводятся основные характеристики 3D-принтера Spectrum Z™510:

  • скорость печати: 2 слоя в минуту;

  • размеры рабочей части: 254×356×203мм;

  • толщина одного слоя: 0,0875 мм;

  • разрешение печати: 600×540 dpi;

  • количество печатающих головок: 4.

Возможные материалы: высококачественные композитные материалы, материалы для непрерывного литья, стандартным материалом является порошок на основе гипса.

Для подсчёта стоимости будущего изделия учитывается не габаритный, а только полезный объём 3D-модели. Изделия проектируются пустотелыми для экономии используемого материала и уменьшения полезного объёма модели. Примерная стоимость рассчитывается исходя из 1см3 = 40 руб., в зависимости от сложности 3D-модели и её размеров.


Литература:

  1. Кашафутдинов С. Т., Лушин В. Н. Атлас аэродинамических характеристик крыловых профилей. — М.: Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, 1994. — 74 с.

  2. Прохоренко В. П. SolidWorks. Практическое руководство. — М.: Бином, 2004. — 289 с.

3. Rev J. Spectrum Z™510 3D Printer. Hardware manual. 08 2007, from http://isites.harvard.edu/fs/docs/icb.topic907832.files/ZCorp-Z510-UserManual.pdf

Обсуждение

Социальные комментарии Cackle