Автор: Хоробрых Михаил Александрович

Рубрика: Технические науки

Опубликовано в Молодой учёный №5 (40) май 2012 г.

Статья просмотрена: 136 раз

Библиографическое описание:

Хоробрых М. А. Разработка дренажной модели профиля с механизацией для автоматизированного эксперимента в аэродинамической трубе // Молодой ученый. — 2012. — №5. — С. 72-73.

Целью исследований является автоматизация эксперимента, экспериментальное и расчетное определение величины подъемной силы, силы лобового сопротивления и отрывной зоны при обтекании профиля с вращающимся цилиндром и выдувом воздуха.

Выполнен расчет обтекания профиля при помощи пакета газодинамического анализа Flow Simulation, являющегося составной частью пакета SolidWorks [1], который основывается на методе конечных элементов. Применение этого пакета позволяет достаточно точно получать основные характеристики профиля: Cx, Cy и др. А также визуализировать картину обтекания профиля.

Рис. 1

Для достижения поставленной цели было выполнено:

- проектирование дренажной модели профиля GA(W)-1 [2] со съёмным вращающимся цилиндром в программном пакете Solid Works (рис. 1);

- изготовление модели с помощью 3D принтера;

- математическое моделирование обтекания аэродинамического профиля GA(W)-1 в вычислительном пакете Solid Works Flow Simulation (рис. 2);

- экспериментальное исследование обтекания модели профиля в аэродинамической трубе.

Рис. 2

Экспериментальная модель профиля с отклоненным закрылком и вращающемся цилиндром с выдувом струи через щель цилиндра, спроектирована таким образом, что позволяет провести автоматизированный эксперимент. Под автоматизированным экспериментом предполагается автоматическое изменение углов атаки модели и закрылка, снятие показаний с дифференциального электронного манометра в автоматическом режиме.

В работе рассмотрены основные особенности применения расчётного метода и результаты расчёта для профиля GA(W)-1.

Так на рис. 3 показано сравнение результатов математического моделирования расчёта аэродинамических характеристик профиля GA(W)-1 в вычислительном пакете Solid Works Flow Simulation с экспериментальными результатами [2]. Расчеты велись на персональном компьютере с процессором Intel Core i5, 2.3 ГГц, ОЗУ 4 Гб с общим количеством расчетных ячеек 941364. Время расчета одного угла атаки составило примерно 45 минут.

На рис. 3 показано хорошее согласование расчетных и экспериментальных данных [2] для аэродинамических характеристик профиля GA(W)-1 без закрылка. Незначительное расхождение между экспериментальными и расчётными данными наблюдается на углах атаки близких к критическим. Можно отметить, что оценка среднего квадратического отклонения в

Рис. 3

диапазоне углов атаки от -7 до +10 градусов составляет 2 % , а во всем диапазоне углов атаки, показанном на рис. 3, эта же величина равна 4 %. Таким образом, математическое моделирование в вычислительном пакете Solid Works Flow Simulation при использовании модели турбулентности k-Ɛ дает хорошо согласованный результат с экспериментом.


Литература:

  1. Прохоренко В.П. SolidWorks. Практическое руководство. – М.: Бином, 2004. – 289 с.

  2. Кашафутдинов С.Т., Лушин В.Н. Атлас аэродинамических характеристик крыловых профилей. – М.: Сибирский научно-исследовательский институт авиации им. С.А. Чаплыгина, 1994. – 74 с.

Основные термины (генерируются автоматически): дренажной модели профиля, аэродинамической трубе, пакете solid works, Разработка дренажной модели, Flow Simulation, Works Flow Simulation, Solid Works Flow, вычислительном пакете solid, аэродинамических характеристик профиля, автоматизированного эксперимента, обтекания профиля, углов атаки, диапазоне углов атаки, обтекания модели профиля, весового эксперимента, углов атаки модели, картину обтекания профиля, Проектирование экспериментальной установки, обтекания аэродинамического профиля, анализа flow simulation.

Обсуждение

Социальные комментарии Cackle
Задать вопрос