Оценка степени восстановления леса после пожара с использованием возможностей дешифрирования космических снимков | Статья в журнале «Юный ученый»

Отправьте статью сегодня! Журнал выйдет 1 февраля, печатный экземпляр отправим 5 февраля.

Опубликовать статью в журнале

Автор:

Научные руководители: ,

Рубрика: Спецвыпуск

Опубликовано в Юный учёный №4 (7) июль 2016 г.

Дата публикации: 31.05.2016

Статья просмотрена: 40 раз

Библиографическое описание:

Королев В. А., Рожков Ю. Ф., Рожкова О. Ю. Оценка степени восстановления леса после пожара с использованием возможностей дешифрирования космических снимков // Юный ученый. — 2016. — №4.1. — С. 77-79. — URL https://moluch.ru/young/archive/7/436/ (дата обращения: 18.01.2020).



Постановка проблемы.

Более 80 % территории Олекминского заповедника занято лесами. В связи с удаленностью территории заповедника от населенных пунктов, для территории характерны пожары, имеющие естественное происхождение (сухие грозы). Оценка процесса восстановления лесов после пожара является актуальной проблемой.

В связи с неоднородностью рельефа и труднодоступностью отдельных участков территории заповедника, исследование больших территорий гарей традиционными методами представляет собой достаточно сложную задачу. Эту проблему можно решить, используя методы спутникового мониторинга.

Для дистанционной оценки площадей гарей, степени повреждения и восстановления растительного покрова после лесного пожара используют индексы, полученные с разновременных снимков различных спутников.

Предмет исследований: характеристика процесса восстановления лесной экосистемы после пожара, на основе возможностей отдельных индексов, получаемых при дешифрировании разновременных снимков спутника Landsat.

Цель исследований: на основе дешифрирования ряда космических снимков, оценить степень восстановления лесной экосистемы территории заповедника на участке пожара 1985 года.

Задачи исследований: 1. Освоить методы дешифрирования снимков с использованием пакета программы ArcGis. 2. Собрать сведения об индексах, отражающих состояние лесной экосистемы после пожара. 3. Провести камеральное дешифрирование разновременных снимков со спутника Landsat. 4. Рассчитать индексы, отражающие состояние лесной экосистемы после пожара. 5. Провести анализ имеющейся информации и обобщить данные.

Для реализации задач нашего исследования были использованы, предоставленные заповедником космические снимки высокого разрешения за летний период 1995, 2001, 2006 и 2011 годов. Исследования проводили на примере пожара 1985 года. Этот пожар возник от сухой грозы летом, перерос в устойчивый низовой пожар и был затушен осенними дождями. Общая площадь пожара составила более 50 тысяч га.

Сбор, обработка и анализ информации продолжался в течение 2014 года. Нами была проведена классификация по методу ISODATA результатов определения индекса гарей (NBR), индекса SWIR, индекса вегетации (NDVI) [1].

Индекс гарей-NBR (4–7 каналы) представляет собой разность спектральных отражений в ближнем и коротковолновом инфракрасных каналах, нормализованную на их сумму: NBR = ТМ4— ТМ7/ ТМ4 + ТМ7, где ТМ4 и ТМ7 — спектральные значения двух каналов спутника Landsat в диапазоне (0,75–0,90 мкм) и (2,09–2,35 мкм) соответственно.

Индекс вегетации-NDVI (3–4каналы) (NormalizedDifferenceVegetationIndex) представляет собой разность спектральных отражений в ближнем инфракрасном и красном оптических каналах, нормализованную на их суммуNDVI = ТМ4— ТМ3/ ТМ4 + ТМ3, где, ТМ4 — отражение в ближней инфракрасной области спектра, ТМ3 — отражение в красной области спектра.

Индекс SWVI (4–5 каналы) коротковолновый индекс, хорошо коррелирующий с влагосодержанием растительности. Участки лесной растительности, пройденные пожарами, характеризуются пониженной спектральной яркостью в ближней инфракрасной зоне. Расчет индекса по формуле: SWVI = (NIRSWIR)/(NIR+SWIR), где, SWIR — 5-й канал снимка LANDSAT 5-TM, NIR- 4-й канал снимка LANDSAT 5-TM.

Основные результаты исследований

1. За 25-летний период после пожара по индексу гари NBR для сильно нарушенного участка 15 % площади перешло из степени нарушенных лесов (I–V степень) в степень ненарушенных (0-степень). В 1995 году было 45 %, в 2011 году стало 30 %.

2. Для мало нарушенного участка гари переход между классами составил 17 %. В 1995 году было 50 %, в 2011году стало 33 %.

3. Сравнение наклона кривых отражающих значение разности между классами показало, что переход из первого класса во второй происходит более интенсивно для сильно нарушенных участков гари (более крутой наклон кривой), чем для слабонарушенных участков гари (рис. 1).

4. По индексу гари NBR за период с 1995 по 2011 гг. произошло резкое увеличение площадей, относящихся к 2 классу (ненарушенные или восстановленные с диапазоном значений NBR от 0,41 до 0,71) с 16643 га до 46890 га (до 89 % площади гари 1985 года).

5. По индексу SWVI для всего пожара также произошло увеличение площадей, относящихся ко 2 классу (с высокими значениями индекса). Увеличение с 6421 га в 1995 году до 35697 га в 2011 г (до 68 % площади гари 1985 года).

6. По индексу вегетации NDVI для всего пожара отмечено увеличение площадей, относящихся к 0-классу поражения (диапазон NDVI от 0,31 до 0,65) или высокопродуктивным лесам. С 21682 га в 1995 году до 51126 га в 2011 году (до 98 % площади гари 1985 года).

Рис.1. Оценка зарастания гарей по индексу NBR (4–7 каналы)

7. Сравнение характера кривых восстановления после пожара 1985 года для гари в целом и для выделенных послепожарных пустошей показало, что они похожи для трех индексов NBR, SWVI, NDVI. Это говорит о том, что восстановление леса на пустошах и на гари в целом идет с одинаковой интенсивностью.

Заключение.

Проведенное дешифрирование разновременных снимков Landsat территории заповедника (снимки 1995, 2001, 2006 и 2011 гг.) позволило выявить процессы восстановления лесной растительности на пожаре 1985 года.

Используемые индексы, дополняя друг друга, объективно отражают скорость восстановления лесной экосистемы после пожара.

В зависимости от степени поражения, восстановление лесной экосистемы после пожара проходило с разной скоростью.

Полевые исследования будут продолжены на территории заповедника в 2015 году. Планируется провести таксационное описание одного из участков пожара 1985 года, уточнить имеющиеся данные.

Литература:

  1. ArcViewImageAnalisis. Руководство пользователя.– М: Дата+, 1998.– 214 с
Основные термины (генерируются автоматически): NBR, NDVI, SWVI, SWIR, лесная экосистема, пожар, LANDSAT, индекс, NIR, площадь гари.


Похожие статьи

Спектральные индексы для оценки пожарной опасности лесов по...

Для оценки лесной пожарной опасности предлагается рассчитывать спектральные индексы и

По исследованиям многих авторов [4, 5] сильная связь между количеством пожаров и сроком

Этот индекс близок по значению коротковолновому вегетационному индексу SWVI (Ceccato et...

Индекс NDVI для дистанционного мониторинга растительности

Индекс Normalized Difference Vegetation Index (NDVI) — это нормализованный относительный индекс растительности

где NIR — это отражение в ближней инфракрасной области спектра, а RED

Американская программа Landsat является наиболее продолжительным проектом по...

Роль лесных пожаров в изменении экосистем в региональном...

Библиографическое описание: Белосеркович А. В. Роль лесных пожаров в изменении экосистем в

Горимость лесов (количество возникающих пожаров и величина пройденной огнем

Первичные гари, как правило, хорошо возобновляются, чаще всего со сменой хвойных...

Технологии определения природных пожаров с использованием...

Рассматривается мониторинг лесных пожаров при помощи спутников Aqua, Terra, NOAA и др. Описываются методы и алгоритмы выявления лесных

Также для детектирования пожарами используют спектрометр TM, установленный на спутнике Landsat 5, и ETM+, установленный на...

Опыт применения дистанционного зондирования растительности...

NDVI также является наиболее широко используемым SVI в биофизических исследованиях дистанционного зондирования для районов арктической тундры и в значительной степени связан с растительными биофизическими свойствами на исследуемом участке.

Сегментация типов местности на спутниковых снимках

В данной работе были использованы такие индексы как: NDVI, EVI и MNDWI.

Для обработки, исходные данные были разделены на зоны интереса, изображения, охватывающие интересующую область, покрывающие площадь примерно 3 на 3 километра.

Лесной пожар и его влияние на лес | Статья в журнале...

Ключевые слова: лесной пожар, состояние и динамику лесного фонда России, лесные горючие материалы, три типа лесных пожаров наземные, надземные и подземные. Лесной пожар — это стихийное неуправляемое распределение огня по лесной площади [1]. С лесными...

Похожие статьи

Спектральные индексы для оценки пожарной опасности лесов по...

Для оценки лесной пожарной опасности предлагается рассчитывать спектральные индексы и

По исследованиям многих авторов [4, 5] сильная связь между количеством пожаров и сроком

Этот индекс близок по значению коротковолновому вегетационному индексу SWVI (Ceccato et...

Индекс NDVI для дистанционного мониторинга растительности

Индекс Normalized Difference Vegetation Index (NDVI) — это нормализованный относительный индекс растительности

где NIR — это отражение в ближней инфракрасной области спектра, а RED

Американская программа Landsat является наиболее продолжительным проектом по...

Роль лесных пожаров в изменении экосистем в региональном...

Библиографическое описание: Белосеркович А. В. Роль лесных пожаров в изменении экосистем в

Горимость лесов (количество возникающих пожаров и величина пройденной огнем

Первичные гари, как правило, хорошо возобновляются, чаще всего со сменой хвойных...

Технологии определения природных пожаров с использованием...

Рассматривается мониторинг лесных пожаров при помощи спутников Aqua, Terra, NOAA и др. Описываются методы и алгоритмы выявления лесных

Также для детектирования пожарами используют спектрометр TM, установленный на спутнике Landsat 5, и ETM+, установленный на...

Опыт применения дистанционного зондирования растительности...

NDVI также является наиболее широко используемым SVI в биофизических исследованиях дистанционного зондирования для районов арктической тундры и в значительной степени связан с растительными биофизическими свойствами на исследуемом участке.

Сегментация типов местности на спутниковых снимках

В данной работе были использованы такие индексы как: NDVI, EVI и MNDWI.

Для обработки, исходные данные были разделены на зоны интереса, изображения, охватывающие интересующую область, покрывающие площадь примерно 3 на 3 километра.

Лесной пожар и его влияние на лес | Статья в журнале...

Ключевые слова: лесной пожар, состояние и динамику лесного фонда России, лесные горючие материалы, три типа лесных пожаров наземные, надземные и подземные. Лесной пожар — это стихийное неуправляемое распределение огня по лесной площади [1]. С лесными...

Задать вопрос