Применение волоконно-оптического гироскопа в инерциальных системах воздушных судов малой авиации | Статья в журнале «Техника. Технологии. Инженерия»

Отправьте статью сегодня! Журнал выйдет 27 апреля, печатный экземпляр отправим 1 мая.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Автоматика и вычислительная техника

Опубликовано в Техника. Технологии. Инженерия №3 (5) июнь 2017 г.

Дата публикации: 25.05.2017

Статья просмотрена: 2349 раз

Библиографическое описание:

Закиров, Р. Г. Применение волоконно-оптического гироскопа в инерциальных системах воздушных судов малой авиации / Р. Г. Закиров, О. Ш. Абдураимов. — Текст : непосредственный // Техника. Технологии. Инженерия. — 2017. — № 3 (5). — С. 19-22. — URL: https://moluch.ru/th/8/archive/62/2489/ (дата обращения: 19.04.2024).



В настоящее время малая авиация выходит из рамок, в которых она была заключена ранее: санитарный, связной, сельскохозяйственный или деловой. Соответственно, повышаются и требования к конструкции и оборудованию воздушных судов малой авиации. Это объясняется целым рядом обстоятельств в различных сферах промышленности и народного хозяйства:

1) Повышение механизации сельского хозяйства;

2) Усложнение бортового оборудования легких частных самолетов;

3) Новая тактика применения легких ВС в военном деле и службе МЧС; а также другими обстоятельствами.

Вышеперечисленные обстоятельства диктуют новые требования к пилотажно-навигационному комплексу (ПНК) самолета малой авиации.

Количество задач, решаемых ПНК легкого самолета, с каждым годом увеличивается, по функциональной и аппаратной сложности он приближается к ПНК тяжелых пассажирских и транспортных самолетов, но при этом должен иметь гораздо меньшие массу и габариты.

Из вышесказанного следует, что основная тенденция в развитии легких самолетов заключается не только в применении новых материалов в планере, но также и в дальнейшем увеличению функциональности ПНК.

Проблема реализации пилотажно-навигационных комплексов легких самолетов, отвечающих современным требованиям, особенно актуальна для Узбекистана. Наша страна имеет особые природно-климатические, экономические и прочие условия, при которых старые методы использования сельскохозяйственной авиации не применимы. И только одно обстоятельство бесспорно — с увеличившейся нагрузкой на пилота даже легкий самолет должен иметь полноценный пилотажно-навигационный комплекс, способный вести самолет в полностью автоматическом режиме. При всем этом, такой комплекс не претендует на попытку заменить пилота, но снижает рутинную нагрузку на него и улучшает безопасность полетов.

Одной из основных систем ПНК любого современного воздушного судна является инерциальная система, позволяющая измерять навигационные параметры воздушного судна –курс, крен, тангаж, истинную скорость и др. относительно системы координат, связанной с Землей (Рис.1).

Рис.1. Углы, определяющие ориентацию воздушного судна в пространстве.

Для измерения углов ориентации воздушного судна в пространстве в инерциальных системах воздушных судов применяется гироскоп.

До недавнего времени в системах навигации летательных аппаратов применялись механические гироскопы, работающие на основе эффекта удержания оси вращения тела в одном направлении инерциального пространства (Рис.2) [1]. Это, как правило, трехстепенные гироскопы, измеряющие крен, тангаж и курс воздушного судна.

Рис. 2. Устройство механического гироскопа

Цена механических гироскопов достаточно высока, так как для их корректной работы требуется высокая точность формы ротора и минимальное трение подшипников. Но, даже при выполнении этих требований, механические гироскопы достаточно недолговечны и ненадежны из-за износа трущихся частей. Кроме того, со временем у таких гироскопов появляется значительная погрешность измерения углов, влияющая на безопасность полета. Для ее уменьшения требуется производить частую поверку приборов с механическими гироскопами на стенде, что требует значительного расхода средств.

Из-за большой массы и габаритов, механические гироскопы нецелесообразно применять на самолетах малой авиации.

Недостатки механических гироскопов в значительной мере устраняются за счет применения оптических гироскопов. По сравнению с механическими они имеют следующие преимущества:

‒ отсутствие подвижных частей, что делает их более надежными;

‒ значительно более высокая чувствительность, а, следовательно, и более высокая точность измерения;

‒ высокая линейность характеристик;

‒ низкая потребляемая мощность;

Принцип действия большинства оптических гироскопов основан на измерении фазового сдвига между двумя волнами, пришедшими на оптический датчик различными путями. Фазовый сдвиг прямо пропорционален угловой скорости вращения, площади, охватываемой интерферометром, и частоте волны. Так как площадь и частота волны остаются неизменными во время работы гироскопа, следовательно, фазовый сдвиг пропорционален только угловой скорости [2].

В зависимости от конструкции замкнутого оптического контура различают два типа оптических гироскопов

1) Кольцевой лазерный гироскоп

2) Волоконно-оптический гироскоп

Конструкция кольцевого лазерного гироскопа показана на рис.3 Принцип работы таких гироскопов основан на разности частот двух генерируемых световых волн, распространяющихся в противоположных направлениях по треугольному оптическому пути, из-за разности оптической длины, проходимыми лучами из-за поворота гироскопа. В настоящее время кольцевые лазерные гироскопы являются наиболее распространенным типом гироскопов, применяемых в авиационных инерциальных системах (Inertial Reference System-IRS), выпускаемых компаниями Honeywell, Allied Signal, Rockwell Collins и др.

Рис. 3. Конструкция кольцевого лазерного гироскопа

Однако, несмотря на большую распространенность, кольцевые лазерные гироскопы также имеют ряд недостатков. К основным из них относятся:

  1. Нелинейность выходного сигнала при малой угловой скорости (влияние синхронизма).
  2. Колебания выходного сигнала из-за газовых потоков в лазере.
  3. Кольцевой лазерный гироскоп очень чувствителен к различного рода деформациям оптического волновода, вызванных тепловым расширением, изменением давления.
  4. Незначительное, по сравнению с механическими гироскопами, уменьшение массы и габаритов

Для устранения этих недостатков в инерциальных системах летательных аппаратов малой авиации предлагается использовать волоконно-оптический гироскоп.

Принцип действия волоконно-оптического гироскопа основан на эффекте Саньяка, который заключается в появление фазового сдвига встречных электромагнитных волн во вращающемся кольцевом интерферометре. [2]

Главными элементами такого гироскопа, являются излучатель (источник света), расщепитель луча (полупрозрачное зеркало), многовитковый замкнутый контур (катушка) из одномодового световода с малым затуханием и фотоприемник (Рис.4).

Изменение геометрических размеров интерферометра под влиянием центробежных сил, а также поперечный сдвиг встречных волн под действием центробежных сил, связанных с кривизной их траектории в интерферометре, можно не учитывать, так как увеличение площади кольца, вызванное данными факторами, очень незначительно, причем это увеличение одинаково для обеих встречных волн и, следовательно, не приводит к появлению разности фаз между ними [2].

.

Рис. 4. Схема волоконно-оптического гироскопа

В отличие от кольцевых лазерных гироскопов волоконно-оптические гироскопы измеряют угловую скорость, а не её приращение. Соответственно, волоконно-оптические гироскопы имеют следующие преимущества перед кольцевыми лазерными гироскопами:

‒ Конструктивно волоконно-оптический гироскоп выполнен в форме твердотельного прибора, что делает его более надежным и простым в эксплуатации.

‒ Этот гироскоп непосредственно измеряет скорость вращения, а не вычисляет ее на основе измерения приращения скорости, как кольцевой лазерный гироскоп.

‒ Чувствителен к обратному (реверсному) направления вращения.

‒ С высокой точностью измеряет малые угловые скорости.

Но самым главным преимуществом волоконно-оптического гироскопа является значительное по сравнению с другими типами гироскопов, уменьшение массы и габаритов, что вносит экономический эффект при проектировании БНК для воздушных судов малой авиации.

Для применения в летательных аппаратах необходимо использовать трехстепенной волоконно-оптический гироскоп, оси катушек которого ориентированы по вертикальной, продольной и поперечной осям воздушного судна.

Таким образом развитие разработок в области применения волоконно-оптических гироскопов в БНК является перспективным направлением.

Литература:

  1. Гироскоп // Википедия. URL: https://ru.wikipedia.org/wiki/ %D0 %93 %D0 %B8 %D1 %80 %D0 %BE %D1 %81 %D0 %BA %D0 %BE %D0 %BF (дата обращения: 12.05.2017).
  2. Волоконно-оптические гироскопы // dssp.petrsu.ru. URL: dssp.petrsu.ru/d/students/presents/2010/opto/prokopovich.pptx (дата обращения: 12.05.2017).
Основные термины (генерируются автоматически): гироскоп, волоконно-оптический гироскоп, малая авиация, кольцевой лазерный гироскоп, фазовый сдвиг, выходной сигнал, легкий самолет, угловая скорость, уменьшение массы, частота волны.

Похожие статьи

Построение АРД-диаграммы в программе Mathcad | Молодой ученый

гироскоп, волоконно-оптический гироскоп, малая авиация, кольцевой лазерный гироскоп, фазовый сдвиг, легкий самолет, выходной сигнал, угловая скорость, уменьшение массы, частота волны.

Дополнительные погрешности гироскопического интегратора...

Применение волоконно-оптического гироскопа в инерциальных... В настоящее время малая авиация выходит из рамок, в которых. Конструкция кольцевого лазерного гироскопа показана на рис.3 Принцип работы таких гироскопов основан.

Особенности распространения радиоволн на космических линиях...

Представлены результаты расчета скорости вращения вектора напряженности электрического поля в зависимости от частоты сигнала.

Они имеют отличительные друг от друга фазовые фронты, приводящие к повороту плоскости поляризации суммарной волны.

Автокомпенсационные методы уменьшения влияния...

Применение волоконно-оптического гироскопа в инерциальных... Принцип действия большинства оптических гироскопов основан на измерении фазового сдвига между двумя волнами, пришедшими на оптический датчик различными путями.

Авиационный глубиномер | Статья в журнале «Молодой ученый»

Применение волоконно-оптического гироскопа в инерциальных... Колебания выходного сигнала из-за газовых потоков в лазере. [2]. Главными элементами такого гироскопа, являются излучатель (источник света), расщепитель луча.

Влияние гауссовой кривизны подвеса поплавкового гироскопа на...

Для численного анализа используется расчетная модель, аналогом которой служит датчик угловых скоростей класса ДУС с жидкостатическим

Карачун, В.В. Дифракция звуковых волн на подвесе гироскопа / В.В.Карачун, В. Г. Лозовик, В. Н. Мельник ; Нац. техн. ун-т Укр. «КПИ».

Применение и перспективы использования легированных...

Уменьшение длины волны накачки вызывает переходы на более высокие энергетические уровни

Волоконно-оптический усилитель с пониженным уровнем шума. В этой среде сигнал на

длина волны, вынужденное рассеяние, индуцированное излучение, лазерное излучение...

Автономная система ориентирования беспилотного летательного...

Масса, г.

Измерение абсолютных значений углов наклона и крена возможно с помощью акселерометра, а гироскоп даёт значения углов наклона, крена и курса с погрешностью, из-за ухода «нуля» и ошибки интегрирования угловых скоростей.

Гамма излучение, инициируемое при работе теплогенератора на...

Принцип действия волоконно-оптического гироскопа основан на эффекте Саньяка, который заключается в появление фазового сдвига встречных электромагнитных волн во вращающемся кольцевом интерферометре.

Похожие статьи

Построение АРД-диаграммы в программе Mathcad | Молодой ученый

гироскоп, волоконно-оптический гироскоп, малая авиация, кольцевой лазерный гироскоп, фазовый сдвиг, легкий самолет, выходной сигнал, угловая скорость, уменьшение массы, частота волны.

Дополнительные погрешности гироскопического интегратора...

Применение волоконно-оптического гироскопа в инерциальных... В настоящее время малая авиация выходит из рамок, в которых. Конструкция кольцевого лазерного гироскопа показана на рис.3 Принцип работы таких гироскопов основан.

Особенности распространения радиоволн на космических линиях...

Представлены результаты расчета скорости вращения вектора напряженности электрического поля в зависимости от частоты сигнала.

Они имеют отличительные друг от друга фазовые фронты, приводящие к повороту плоскости поляризации суммарной волны.

Автокомпенсационные методы уменьшения влияния...

Применение волоконно-оптического гироскопа в инерциальных... Принцип действия большинства оптических гироскопов основан на измерении фазового сдвига между двумя волнами, пришедшими на оптический датчик различными путями.

Авиационный глубиномер | Статья в журнале «Молодой ученый»

Применение волоконно-оптического гироскопа в инерциальных... Колебания выходного сигнала из-за газовых потоков в лазере. [2]. Главными элементами такого гироскопа, являются излучатель (источник света), расщепитель луча.

Влияние гауссовой кривизны подвеса поплавкового гироскопа на...

Для численного анализа используется расчетная модель, аналогом которой служит датчик угловых скоростей класса ДУС с жидкостатическим

Карачун, В.В. Дифракция звуковых волн на подвесе гироскопа / В.В.Карачун, В. Г. Лозовик, В. Н. Мельник ; Нац. техн. ун-т Укр. «КПИ».

Применение и перспективы использования легированных...

Уменьшение длины волны накачки вызывает переходы на более высокие энергетические уровни

Волоконно-оптический усилитель с пониженным уровнем шума. В этой среде сигнал на

длина волны, вынужденное рассеяние, индуцированное излучение, лазерное излучение...

Автономная система ориентирования беспилотного летательного...

Масса, г.

Измерение абсолютных значений углов наклона и крена возможно с помощью акселерометра, а гироскоп даёт значения углов наклона, крена и курса с погрешностью, из-за ухода «нуля» и ошибки интегрирования угловых скоростей.

Гамма излучение, инициируемое при работе теплогенератора на...

Принцип действия волоконно-оптического гироскопа основан на эффекте Саньяка, который заключается в появление фазового сдвига встречных электромагнитных волн во вращающемся кольцевом интерферометре.

Задать вопрос