Теория процесса сажевыделения дизеля 2Ч 10,5/12,0 при работе на метаноле | Статья в журнале «Молодой ученый»

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №16 (96) август-2 2015 г.

Дата публикации: 19.08.2015

Статья просмотрена: 20 раз

Библиографическое описание:

Анфилатов А. А. Теория процесса сажевыделения дизеля 2Ч 10,5/12,0 при работе на метаноле // Молодой ученый. — 2015. — №16. — С. 139-142. — URL https://moluch.ru/archive/96/21640/ (дата обращения: 11.12.2018).

При сгорании топлива в цилиндре дизеля образуется большое количество сажи. Для ее количественного анализа пользуются следующими понятиями: массовая концентрация С сажи и относительная концентрация r сажи в цилиндре дизеля.

На основании закона Бугера — Беера массовая концентрация сажи при сером характере излучения может быть выражена через относительную концентрацию r (С = r/M). Поэтому относительная концентрация r всегда пропорциональна массовой концентрации C.

,                                                                                                     (1)

где I0 и Ie — интенсивности луча начальная и после его прохождения через цилиндр;

М — число Бугера,

M = const для эксперимента.

К моменту открытия выпускного клапана величина ослабления проходящего света в цилиндре дизеля, как правило, невелика. Поэтому массовую концентрацию С сажи в цилиндре дизеля на момент открытия выпускного клапана необходимо сопоставлять с уровнем дымности ОГ [1–10].

Для зависимостей C = f(φ) и r = f(φ) существует три характерные точки:

-          Начало активного сажевыделения всегда совпадает с началом видимого сгорания и активного тепловыделения;

-          Сmax — максимальное значение массовой концентрации сажи. Время достижения Сmax для дизеля 2Ч 10,5/12,0 составляет 2…3 мс, угол φ п.к.в. при котором достигается максимальное значение массовой концентрация частиц сажи в цилиндре дизеля больше угла φ п.к.в. при котором достигается первый максимум активного тепловыделения;

-          Свых — значение массовой концентрации сажи в момент начала открытия выпускного клапана.

Дымность ОГ зависит от интенсивности процесса выгорания массы сажи после достижения максимального значения Сmax. Выгорание сажи в свою очередь зависит от скорости процесса окисления сажевых частиц и от времени, отводимого на этот процесс [11–18].

Таким образом, процесс развития сажевыделения можно условно разбить на 3 характерных участка. Выделение участков в процессе сажевыделения основывается на предположении об относительной роли конкурирующих процессов образования и выгорания сажи. Процесс сгорания в целом обусловлен множеством различных физических явлений. Поэтому, границы участков будут иметь условный характер:

I — участок преимущественного образования сажи

От угла φ п.к.в. при котором наблюдается начало активного сажевыделения — до угла φ п.к.в. когда достигается максимальное давление в цилиндре рmax. В этот промежуток времени процесс образования сажи преобладает над ее выгоранием. Этот участок включает в себя период наибольшего активного тепловыделения, связанный со сгоранием смеси подготовленной за период задержки воспламенения.

Для дизеля при работе на метаноле с ДСТ этот участок имеет свои особенности, на которые влияют характеристики топлива и процесса впрыскивания. На основании теоретических и экспериментальных исследований известно, что сажа образуется в ядре факела ДТ. Таким образом, можно предположить, что массовая концентрация достигает значений близких к максимальному после впрыскивания запальной порции ДТ. Это подтверждается замедлением активного тепловыделения, что связано в свою очередь с тем, что метанол обладает высокой теплотой парообразования. При взаимодействии с факелом ДТ метанолу необходимо некоторое время для достижения необходимой температуры воспламенения [19–26].

Так же это предположение подтверждается тем, что запальная порция ДТ мала по сравнению с зарядом впрыскиваемого метанола, время его впрыскивания заканчивается значительно раньше, чем впрыскивание метанола. Это явление снижает скорость процесса сгорания, а следовательно, и процессов образования и выгорания сажи.

При взаимодействии факелов ДТ и метанола образуется большое количество микро и макрозон, характеризующиеся химической и физической неоднородностью. При сгорании метанола образуются активные радикалы ОН, которые вступают в химические реакции с углеводородами топлива и образовавшейся сажей, тем самым увеличивая интенсивность процесса окисления сажи. Пересекающиеся струи ДТ и метанола выносят основную массу образовавшейся сажи за пределы пламенной зоны, и, основываясь на физических свойствах метанола можно сделать предположение, что частицы сажи находятся в облаке испарившегося метанола.

II — участок одновременного образования и выгорания сажи

От угла φ п.к.в. когда достигается максимальное давление — до значения угла φ п.к.в. когда достигается максимальное значение температуры Тmax. В этот промежуток времени в цилиндре идет процесс развитого диффузионного горения основной части топлива. Диффузионным пламенем охвачена большая часть объема, а температура газов достигает своего максимального значения. Процессы образования и выгорания сажи идут с соизмеримыми скоростями, но количество образовавшейся сажи незначительно превосходит количество выгорающей сажи, что обуславливает рост сажесодержания до максимального значения [27–33].

III — участок преимущественного выгорания сажи

От угла φ п.к.в. когда достигается максимальное значение температуры Тmax — до угла φ п.к.в. когда открываются выпускные клапана при φ = 140,0 º п. к.в. после ВМТ. Образование сажи практически завершилось и продолжается интенсивное выгорание сажи. Образовавшиеся в результате горения метанола активные радикалы ОН∙ вступают во взаимодействие с частицами сажи, и увеличивают толщину пограничного слоя. Тем самым увеличивая вклад в процесс окисления реакций частиц сажи с водяным паром. Чем дольше длится этот интервал времени, тем меньше останется сажи к моменту открытия выпускных клапанов.

Наиболее эффективным представляется снижение дымности воздей-ствием на выгорание сажи в цилиндре до открытия выпускных клапанов. С этой целью желательно смещение максимума сажевыделения в сторону ВМТ [34–38].

 

Литература:

 

1.         Лиханов В. А., Лопатин О. П. Влияние применения природного газа и рециркуляции отработавших газов, метаноло- и этаноло-топливных эмульсий на содержание токсичных компонентов в ОГ // Транспорт на альтернативном топливе. 2015. № 4 (46). С. 42–47.

2.         Лиханов В. А., Лопатин О. П. Результаты исследований содержания оксидов азота в цилиндре газодизеля с турбонаддувом // Актуальные проблемы гуманитарных и естественных наук. 2015. № 5–1. С. 66–68.

3.         Лиханов В. А., Лопатин О. П. Исследования эффективных и экологических показателей дизеля 4Ч 11,0/12,5 при работе на природном газе с рециркуляцией отработавших газов, метаноло- и этаноло-топливных эмульсиях // Международный журнал прикладных и фундаментальных исследований. 2015. № 5–1. С. 22–25.

4.         Лиханов В. А., Лопатин О. П. Исследование экологических показателей дизеля при работе на природном газе с рециркуляцией, метаноло- и этаноло топливных эмульсиях // Современная наука: актуальные проблемы и пути их решения. 2015. № 3 (16). С. 26–28.

5.         Лиханов В. А., Лопатин О. П. Влияние рециркуляции отработавших газов на индикаторные показатели газодизеля // Современная наука: актуальные проблемы и пути их решения. 2015. № 4 (17). С. 31–33.

6.         Лиханов В. А., Лопатин О. П. Исследование показателей процесса сгорания газодизеля при работе с рециркуляцией отработавших газов // Современная наука: актуальные проблемы и пути их решения. 2015. № 4 (17). С. 33–36.

7.         Лиханов В. А., Лопатин О. П. Исследование эффективных показателей дизеля при работе на природном газе, метаноло- и этаноло-топливных эмульсиях // Международный научно-исследовательский журнал. 2015. № 4–1 (35). С. 79–81.

8.         Лиханов В. А., Лопатин О. П. Улучшение эксплуатационных показателей дизеля 4Ч 11,0/12,5 путем применения этаноло-топливной эмульсии // Известия Международной академии аграрного образования. 2013. Т. 4. № 16. С. 170–173.

9.         Лиханов В. А., Лопатин О. П. Исследование скоростного режима дизеля при работе на природном газе с рециркуляцией, метаноло- и этаноло топливных эмульсиях // Современная наука: актуальные проблемы и пути их решения. 2015. № 3 (16). С. 24–26.

10.     Лиханов В. А., Лопатин О. П. Исследование нагрузочного режима дизеля при работе на природном газе с рециркуляцией, метаноло- и этаноло топливных эмульсиях // Потенциал современной науки. 2015. № 3 (11). С. 40–44.

11.     Лиханов В. А., Лопатин О. П. Улучшение эксплуатационных показателей тракторного дизеля Д-240 путем применения этаноло-топливной эмульсии // Научно-практический журнал Пермский аграрный вестник: 2013. № 1 (1). С. 29–32.

12.     Лиханов В. А., Лопатин О. П., Олейник М. А., Дубинецкий В. Н. Особенности химизма и феноменологии образования оксидов азота в цилиндре дизеля при работе на природном газе // Тракторы и сельхозмашины. 2006. № 11. С 13–16.

13.     Лиханов В. А., Лопатин О. П., Шишканов Е. А. Снижение содержания оксидов азота в отработавших газах дизеля путем их рециркуляции // Тракторы и сельхозмашины. 2007. № 9. С. 8–9.

14.     Лиханов В. А., Лопатин О. П. Снижение содержания оксидов азота в отработавших газах дизеля 4Ч 11,0/12,5 путем применения этаноло-топливной эмульсии // Транспорт на альтернативном топливе. 2012. № 4 (28). С. 70–73.

15.     Скрябин М. Л. Влияние применения метаноло-топливной эмульсии на содержание оксидов азота в отработавших газах 4Ч 11,0/12,5 в зависимости от изменения частоты вращения // Молодой ученый. 2015. № 11(91). С. 439–442.

16.     Скрябин М. Л. Влияние применение метанола на дымность отработавших газов дизеля 2Ч 10,5/12 // Молодой ученый. 2015. № 11(91).С. 445–448.

17.     Скрябин М. Л. Влияние применения метанола с двойной системой топливоподачи в дизеле 2Ч 10,5/12,0 на показатели процесса сгорания и показатели сажесодержания // Молодой ученый. 2015. № 11(91). С. 442–445.

18.     Скрябин М. Л. Влияние применения метаноло-топливной эмульсии на массовую концентрацию оксидов азота в отработавших газах 4Ч 11,0/12,5 в зависимости от нагрузки на номинальной частоте вращения // Молодой ученый. 2015. № 12(92). С. 301–303.

19.     Методика исследований дизеля 2Ч 10,5/12,0 по снижению содержания оксидов азота при работе на метаноле // Молодой ученый. 2015. № 12 (92). с. 131–134.

20.     Скрябин М. Л. Влияние применения природного газа на общую токсичность дизеля 4ЧН 11,0/12,5 с ПОНВ в зависимости от изменения частоты вращения коленчатого вала // Молодой ученый. 2015. № 12(92). С. 323–326.

21.     Скрябин М. Л. Влияние применения природного газа на экологические показатели дизеля 4ЧН 11,0/12,5 при работе на частоте вращения максимального крутящего момента // Молодой ученый. 2015. № 12(92). С. 312–314.

22.     Скрябин М. Л. Влияние применения природного газа на экологические показатели дизеля 4ЧН 11,0/12,5 с ПОНВ в зависимости от изменения нагрузки на номинальной частоте вращения // Молодой ученый. 2015. № 12(92). С. 317–320.

23.     Скрябин М. Л. Влияние применения природного газа на эффективные показатели дизеля 4ЧН 11,0/12,5 в зависимости от изменения частоты вращения коленчатого вала // Молодой ученый. 2015. № 12(92). С. 320–323.

24.     Скрябин М. Л. Влияние применения природного газа на эффективные показатели дизеля 4ЧН 11,0/12,5 с ПОНВ в зависимости от изменения нагрузки // Молодой ученый. 2015. № 12(92). С. 314–317.

25.     Скрябин М. Л. Математическая модель расчета содержания оксидов азота в цилиндре дизеля 4 ЧН 11,0/12,5 с ПОНВ при работе на природном газе // Молодой ученый. 2015. № 12 (92). С. 309–312.

26.     Скрябин М. Л. Особенности методики стендовых исследований работы дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением надувочного воздуха при работе на природном газе // Молодой ученый. 2015. № 12(92). С. 306–309.

27.     Скрябин М. Л. Особенности расчета констант скорости реакций термической диссоциации в цилиндре дизеля // Молодой ученый. 2015. № 12(92). С. 303–306.

28.     Скрябин М. Л. Исследование эффективных показателей газодизеля с промежуточным охлаждением наддувочного воздуха // Молодой ученый. 2015. № 10 (90). С. 312–315.

29.     Скрябин М. Л. Улучшение экологических показателей дизеля путем применения природного газа и промежуточного охлаждения наддувочного воздуха // Молодой ученый. 2015. № 10 (90). С. 315–318.

30.     Чувашев А. Н. Мощностные и экономические показатели дизеля 2Ч 10,5 / 12,0 при работе на метаноле с ДСТ в зависимости от изменения нагрузки на номинальной частоте вращения. Молодой ученый. 2015. № 15 (95) часть II. С. 199–202.

31.     Чувашев А. Н. Мощностные и экономические показатели дизеля 2Ч 10,5 / 12,0 при работе на метаноле с ДСТ в зависимости от изменения нагрузки на режиме максимального крутящего момента. Молодой ученый. 2015. № 15 (95) часть II. С. 202–205.

32.     Чувашев А. Н. Мощностные и экономические показатели дизеля 2Ч 10,5 / 12,0 при работе на метаноле с ДСТ в зависимости от изменения частоты вращения. Молодой ученый. 2015. № 15 (95) часть II. С. 205–207.

33.     Чувашев А. Н. Экологические показатели дизеля 2Ч 10,5 / 12,0 при работе на метаноле с ДСТ в зависимости от изменения нагрузки. Молодой ученый. 2015. № 15 (95) часть II. С. 208–210.

34.     Чувашев А. Н. Экологические показатели дизеля 2Ч 10,5 / 12,0 при работе на метаноле с ДСТ в зависимости от изменения нагрузки на режиме максимального крутящего момента. Молодой ученый. 2015. № 15 (95) часть II. С. 211–213.

35.     Чувашев А. Н. Экологические показатели дизеля 2Ч 10,5 / 12,0 при работе на метаноле с ДСТ в зависимости от изменения частоты вращения. Молодой ученый. 2015. № 15 (95) часть II. С. 214–216.

36.     Чувашев А. Н. Выводы и рекомендации по поводу использования метанола с ДСТ в качестве моторного топлива в дизеле 2Ч 10,5 / 12,0. Молодой ученый. 2015. № 15 (95) часть II. С. 217–219.

37.     Чувашев А. Н. Методика исследования рабочего процесса дизеля воздушного охлаждения при работе на метаноле с использованием ДСТ. Молодой ученый. 2015. № 15 (95) часть II. С. 219–222.

38.     Чувашев А. Н. Показатели процесса сгорания дизеля 2Ч 10,5/12,0 при работе на метаноле с ДСТ в зависимости от изменения нагрузки на частоте вращения коленчатого вала при максимальном крутящем моменте. Молодой ученый. 2015. № 12 (92) часть III. С. 347–348.

Основные термины (генерируются автоматически): выгорание сажи, максимальное значение, цилиндр дизеля, активное тепловыделение, образовавшаяся сажа, момент открытия, массовая концентрация сажи, относительная концентрация, выпускной клапан, запальная порция.


Похожие статьи

Теория процесса сажевыделения в дизеле 2Ч 10,5/12...

- Свых — значение массовой концентрации сажи в момент начала открытия выпускного клапана. Дымность ОГ зависит от интенсивности процесса выгорания массы сажи после достижения максимального значения Сmax.

Уточненная математическая модель образования и выгорания...

Рациональное сочетание расчета и эксперимента позволяет повысить эффективность работ по улучшению экологических показателей дизелей и расширить границы исследования. Математическая модель образования и выгорания частиц сажи в цилиндре дизеля должна...

Исследование процессов сажеобразования и сажесодержания...

цилиндр дизеля, процесс образования, этап процесса, температура газов, содержание сажи, скорость выгорания сажи, концентрация сажи, изменение показателей, максимальное значение, время.

Показатели процессов сгорания и сажеобразования в цилиндре...

максимальное значение, относительная концентрация, концентрация сажи, метанол, работа дизеля, процесс образования сажи, процесс выгорания, максимальная осредненная температура, коленчатый вал, угол поворота.

Уточненный химизм процессов образования частиц сажи...

При работе дизеля на ЭТЭ основное количество сажи в составе ОГ образуется при сгорании ДТ [3, 4].

Уточненная математическая модель образования и выгорания частиц сажи в цилиндре дизеля 4Ч 11,0/12,5 при работе на этаноло-топливной эмульсии.

Влияние применения метанола на показатели процессов сгорания...

Концентрация сажи в момент открытия выпускного клапана при увеличении установочного УОВТ тоже снижается.

34º;― ∙ ∙ ― ∙ ∙ ― метанол с запальным ДТ, Θм = 30º. Концентрации снижаются на 92,5 %. Максимальная осредненная температура цикла достигает своего...

Показатели процессов сгорания и сажеобразования в цилиндре...

При работе дизеля на ДТ массовая и относительная концентрации сажи достигают своего максимального значения через φCmax дт расч = 12º п. к.в. после ВМТ. Сmax дт расч. имеет значение 4,2 г/м3, а rmax дт расч.= 2,95 г/кг. Далее процесс выгорания сажевых частиц...

Влияние применения этаноло-топливной эмульсии на показатели...

Расчетная массовая концентрация сажи в цилиндре в момент открытия выпускного клапана Свых этэ расч = 0,043 г/м3, расчетное количество частиц сажи в единице объема цилиндра Nвых этэ расч = 0,675∙106 мм-3.

Влияние применение метанола с двойной системой...

С увеличением нагрузки массовая концентрация сажи в цилиндре в момент открытия выпускного клапана увеличивается, и снижение становиться менее значительным.

Обсуждение

Социальные комментарии Cackle

Похожие статьи

Теория процесса сажевыделения в дизеле 2Ч 10,5/12...

- Свых — значение массовой концентрации сажи в момент начала открытия выпускного клапана. Дымность ОГ зависит от интенсивности процесса выгорания массы сажи после достижения максимального значения Сmax.

Уточненная математическая модель образования и выгорания...

Рациональное сочетание расчета и эксперимента позволяет повысить эффективность работ по улучшению экологических показателей дизелей и расширить границы исследования. Математическая модель образования и выгорания частиц сажи в цилиндре дизеля должна...

Исследование процессов сажеобразования и сажесодержания...

цилиндр дизеля, процесс образования, этап процесса, температура газов, содержание сажи, скорость выгорания сажи, концентрация сажи, изменение показателей, максимальное значение, время.

Показатели процессов сгорания и сажеобразования в цилиндре...

максимальное значение, относительная концентрация, концентрация сажи, метанол, работа дизеля, процесс образования сажи, процесс выгорания, максимальная осредненная температура, коленчатый вал, угол поворота.

Уточненный химизм процессов образования частиц сажи...

При работе дизеля на ЭТЭ основное количество сажи в составе ОГ образуется при сгорании ДТ [3, 4].

Уточненная математическая модель образования и выгорания частиц сажи в цилиндре дизеля 4Ч 11,0/12,5 при работе на этаноло-топливной эмульсии.

Влияние применения метанола на показатели процессов сгорания...

Концентрация сажи в момент открытия выпускного клапана при увеличении установочного УОВТ тоже снижается.

34º;― ∙ ∙ ― ∙ ∙ ― метанол с запальным ДТ, Θм = 30º. Концентрации снижаются на 92,5 %. Максимальная осредненная температура цикла достигает своего...

Показатели процессов сгорания и сажеобразования в цилиндре...

При работе дизеля на ДТ массовая и относительная концентрации сажи достигают своего максимального значения через φCmax дт расч = 12º п. к.в. после ВМТ. Сmax дт расч. имеет значение 4,2 г/м3, а rmax дт расч.= 2,95 г/кг. Далее процесс выгорания сажевых частиц...

Влияние применения этаноло-топливной эмульсии на показатели...

Расчетная массовая концентрация сажи в цилиндре в момент открытия выпускного клапана Свых этэ расч = 0,043 г/м3, расчетное количество частиц сажи в единице объема цилиндра Nвых этэ расч = 0,675∙106 мм-3.

Влияние применение метанола с двойной системой...

С увеличением нагрузки массовая концентрация сажи в цилиндре в момент открытия выпускного клапана увеличивается, и снижение становиться менее значительным.

Задать вопрос